Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 8, Pages 1302–1313
DOI: https://doi.org/10.7868/S0044466913080140
(Mi zvmmf9902)
 

This article is cited in 8 scientific papers (total in 8 papers)

Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle

E. A. Volkov

Steklov Mathematical Institute of the Russian Academy of Sciences
Full-text PDF (222 kB) Citations (8)
References:
Abstract: A nonlocal boundary value problem for Laplace’s equation on a rectangle is considered. Dirichlet boundary conditions are set on three sides of the rectangle, while the boundary values on the fourth side are sought using the condition that they are equal to the trace of the solution on the parallel midline of the rectangle. A simple proof of the existence and uniqueness of a solution to this problem is given. Assuming that the boundary values given on three sides have a second derivative satisfying a Hölder condition, a finite difference method is proposed that produces a uniform approximation (on a square mesh) of the solution to the problem with second order accuracy in space. The method can be used to find an approximate solution of a similar nonlocal boundary value problem for Poisson’s equation.
Key words: nonlocal boundary value problem in a rectangular domain, finite difference method, convergence of discrete solutions.
Received: 14.03.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 8, Pages 1128–1138
DOI: https://doi.org/10.1134/S0965542513080149
Bibliographic databases:
Document Type: Article
UDC: 519.632.4
Language: Russian
Citation: E. A. Volkov, “Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle”, Zh. Vychisl. Mat. Mat. Fiz., 53:8 (2013), 1302–1313; Comput. Math. Math. Phys., 53:8 (2013), 1128–1138
Citation in format AMSBIB
\Bibitem{Vol13}
\by E.~A.~Volkov
\paper Approximate grid solution of a nonlocal boundary value problem for Laplace’s equation on a rectangle
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 8
\pages 1302--1313
\mathnet{http://mi.mathnet.ru/zvmmf9902}
\crossref{https://doi.org/10.7868/S0044466913080140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3255257}
\elib{https://elibrary.ru/item.asp?id=19569101}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 8
\pages 1128--1138
\crossref{https://doi.org/10.1134/S0965542513080149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323626600008}
\elib{https://elibrary.ru/item.asp?id=20453350}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84883069356}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9902
  • https://www.mathnet.ru/eng/zvmmf/v53/i8/p1302
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Æóðíàë âû÷èñëèòåëüíîé ìàòåìàòèêè è ìàòåìàòè÷åñêîé ôèçèêè Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:630
    Full-text PDF :100
    References:86
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024