Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 11, Pages 1868–1882
DOI: https://doi.org/10.31857/S0044466922110023
(Mi zvmmf11473)
 

Mathematical physics

Interpolatory conservative-characteristic scheme with improved dispersion properties for computational fluid dynamics

N. A. Afanasiev, N. È. Shagirov, V. M. Goloviznin

Lomonosov Moscow State University, 119991, Moscow, Russia
Abstract: Conservative-characteristic schemes for the numerical solution of systems of hyperbolic equations combine the advantages of shock-capturing conservative methods and the method of characteristics. They operate with two types of variables: conservative and flux. Conservative variables have the meaning of mean values, refer to the middle of the cells, and are calculated using the finite volume method. The flux variables determine the fluxes on the faces of computational cells and are calculated using the characteristic form of equations and local Riemann invariants. This part of the algorithm allows various implementations, on which the dissipative and dispersion properties of the algorithms depend. For example, in the CABARET scheme, the flux variables are calculated by linear extrapolation of local invariants, but there are also schemes with interpolation of invariants and their subsequent transfer along the characteristics (active flux schemes). In the latter case, various options are also possible. This article is devoted to the results of the study of a possible variant of interpolatory conservative-characteristic schemes for systems of hyperbolic equations.
Key words: computational fluid dynamics, conservative-characteristic methods, hyperbolic equations, Riemann invariants.
Funding agency Grant number
Russian Science Foundation 18-11-00163
This work was supported by the Russian Science Foundation, project no. 18-11-00163.
Received: 09.04.2022
Revised: 09.04.2022
Accepted: 07.07.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 11, Pages 1885–1899
DOI: https://doi.org/10.1134/S0965542522110021
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: N. A. Afanasiev, N. È. Shagirov, V. M. Goloviznin, “Interpolatory conservative-characteristic scheme with improved dispersion properties for computational fluid dynamics”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1868–1882; Comput. Math. Math. Phys., 62:11 (2022), 1885–1899
Citation in format AMSBIB
\Bibitem{AfaShaGol22}
\by N.~A.~Afanasiev, N.~\`E.~Shagirov, V.~M.~Goloviznin
\paper Interpolatory conservative-characteristic scheme with improved dispersion properties for computational fluid dynamics
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 11
\pages 1868--1882
\mathnet{http://mi.mathnet.ru/zvmmf11473}
\crossref{https://doi.org/10.31857/S0044466922110023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4517579}
\elib{https://elibrary.ru/item.asp?id=49455081}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 11
\pages 1885--1899
\crossref{https://doi.org/10.1134/S0965542522110021}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11473
  • https://www.mathnet.ru/eng/zvmmf/v62/i11/p1868
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024