Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 11, Page 1867
DOI: https://doi.org/10.31857/S0044466922110035
(Mi zvmmf11472)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partial Differential Equations

Numerical solution of two and three-dimensional fractional heat conduction equations via Bernstein polynomials

M. Gholizadeh, M. Alipour, M. Behroozifar

Department of Mathematics, Faculty of Basic Science, Babol Noshirvani University of Technology, Shariati Ave, 47148-71167 Babol, Iran
Citations (2)
Abstract: In this paper, we develop a new scheme for the numerical solution of the two- and three-dimensional fractional heat conduction equations on a rectangular plane. Our main aim is to characterize the Bernstein operational matrices of derivative and integration in the two and three-dimensional cases and then apply them for solving the mentioned problems. This work causes to reduce the solution of fractional differential equations to the solution of an algebraic equation system. The presented method is applied to solve several problems. Approximated solutions are compared with the exact solutions which results show a negligible error.
Key words: Bernstein polynomials, two- and three-dimensional fractional heat conduction equations, operational matrices, Caputo fractional derivative, Riemann–Liouville fractional integral.
Received: 11.10.2021
Revised: 10.06.2022
Accepted: 07.07.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 11, Pages 1865–1884
DOI: https://doi.org/10.1134/S0965542522110033
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: English
Citation: M. Gholizadeh, M. Alipour, M. Behroozifar, “Numerical solution of two and three-dimensional fractional heat conduction equations via Bernstein polynomials”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022), 1867; Comput. Math. Math. Phys., 62:11 (2022), 1865–1884
Citation in format AMSBIB
\Bibitem{GhoAliBeh22}
\by M.~Gholizadeh, M.~Alipour, M.~Behroozifar
\paper Numerical solution of two and three-dimensional fractional heat conduction equations via Bernstein polynomials
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 11
\pages 1867
\mathnet{http://mi.mathnet.ru/zvmmf11472}
\crossref{https://doi.org/10.31857/S0044466922110035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4517578}
\elib{https://elibrary.ru/item.asp?id=49455080}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 11
\pages 1865--1884
\crossref{https://doi.org/10.1134/S0965542522110033}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11472
  • https://www.mathnet.ru/eng/zvmmf/v62/i11/p1867
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024