Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Pages 1374–1385
DOI: https://doi.org/10.31857/S0044466922080142
(Mi zvmmf11441)
 

This article is cited in 4 scientific papers (total in 4 papers)

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
Mathematical physics

Presure boundary conditions in the collocated finite-volume method for the steady Navier–Stokes equations

K. M. Terekhovab

a Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
Citations (4)
Abstract: The pressure boundary conditions for the steady-state solution of the incompressible Navier–Stokes equations with the collocated finite-volume method are discussed. This work is based on inf-sup stable coupled flux approximation. The flux is derived based on the linearity assumption of the velocity and pressure unknowns that yields one-sided flux expressions. Enforcing continuity of these expressions on internal interface we reconstruct the interface velocity and pressure and obtain single continuous flux. As a result, the conservation for the momentum and the divergence is discretely exact. However, on boundary interfaces additional pressure boundary condition is required to reconstruct the interface pressure.
Key words: Navier–Stokes equations, incompressible fluid, finite-volume method, boundary conditions.
Received: 10.10.2021
Revised: 21.01.2022
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2022, Volume 62, Issue 8, Pages 1345–1355
DOI: https://doi.org/10.1134/S0965542522080139
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: K. M. Terekhov, “Presure boundary conditions in the collocated finite-volume method for the steady Navier–Stokes equations”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1374–1385; Comput. Math. Math. Phys., 62:8 (2022), 1345–1355
Citation in format AMSBIB
\Bibitem{Ter22}
\by K.~M.~Terekhov
\paper Presure boundary conditions in the collocated finite-volume method for the steady Navier--Stokes equations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1374--1385
\mathnet{http://mi.mathnet.ru/zvmmf11441}
\crossref{https://doi.org/10.31857/S0044466922080142}
\elib{https://elibrary.ru/item.asp?id=49273511}
\transl
\jour Comput. Math. Math. Phys.
\yr 2022
\vol 62
\issue 8
\pages 1345--1355
\crossref{https://doi.org/10.1134/S0965542522080139}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11441
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1374
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024