Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2022, Volume 62, Number 8, Pages 1360–1373
DOI: https://doi.org/10.31857/S0044466922080166
(Mi zvmmf11440)
 

10th International Conference "Numerical Geometry, Meshing and High Performance Computing (NUMGRID 2020/Delaunay 130)"
Partial Differential Equations

Detecting two-dimensional fingering patterns in a non-equilibrium pde model via adaptive moving meshes

P. A. Zegeling

Utrecht University
Abstract: This article discusses an adaptive mesh method applied to a bifurcation problem in a non-equilibrium Richard’s equation from hydrology. The extension of this PDE model for the water saturation S, to take into account additional dynamic memory effects gives rise to an extra third-order mixed space-time derivative term in the PDE. The one-space dimensional case predicts the formation of steep non-monotone waves depending on the non-equilibrium parameter. In two space dimensions, this parameter and the frequency in a small perturbation term, predict that the waves may become unstable, thereby initiating so-called gravity-driven fingers. To detect the steep solutions of the time-dependent PDE model, we have used a sophisticated adaptive moving mesh method based on a scaled monitor function.
Key words: traveling waves, (non-)monotonicity, porous media, fingering structures, adaptive moving mesh.
Received: 10.10.2021
Revised: 03.03.2022
Accepted: 11.04.2022
English version:
Computational Mathematics and Mathematical Physics, 2020, Volume 62, Issue 8, Pages 1331–1344
DOI: https://doi.org/10.1134/S0965542522080140
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. A. Zegeling, “Detecting two-dimensional fingering patterns in a non-equilibrium pde model via adaptive moving meshes”, Zh. Vychisl. Mat. Mat. Fiz., 62:8 (2022), 1360–1373; Comput. Math. Math. Phys., 62:8 (2020), 1331–1344
Citation in format AMSBIB
\Bibitem{Zeg22}
\by P.~A.~Zegeling
\paper Detecting two-dimensional fingering patterns in a non-equilibrium pde model via adaptive moving meshes
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2022
\vol 62
\issue 8
\pages 1360--1373
\mathnet{http://mi.mathnet.ru/zvmmf11440}
\crossref{https://doi.org/10.31857/S0044466922080166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4480793}
\elib{https://elibrary.ru/item.asp?id=49273510}
\transl
\jour Comput. Math. Math. Phys.
\yr 2020
\vol 62
\issue 8
\pages 1331--1344
\crossref{https://doi.org/10.1134/S0965542522080140}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11440
  • https://www.mathnet.ru/eng/zvmmf/v62/i8/p1360
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024