Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 481, Pages 87–107 (Mi znsl6780)  

Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle

N. Mnëvab

a Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
References:
Abstract: We investigate a PL topology question: which circle bundles can be triangulated over a given triangulation of the base? The question gets a simple answer emphasizing the role of minimal triangulations encoded by local systems of circular permutations of vertices of the base simplices. The answer is based on an experimental fact: the classical Huntington transitivity axiom for cyclic orders can be expressed as the universal binary Chern cocycle.
Key words and phrases: bundle triangulations, Chern class.
Funding agency Grant number
Russian Science Foundation 19-71-30002
Research is supported by the Russian Science Foundation grant 19-71-30002.
Received: 10.09.2019
Document Type: Article
UDC: 515.145.25, 515.145.82
Language: English
Citation: N. Mnëv, “Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Zap. Nauchn. Sem. POMI, 481, POMI, St. Petersburg, 2019, 87–107
Citation in format AMSBIB
\Bibitem{Mne19}
\by N.~Mn\"ev
\paper Minimal triangulations of circle bundles, circular permutations, and the binary Chern cocycle
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXX
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 481
\pages 87--107
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6780}
Linking options:
  • https://www.mathnet.ru/eng/znsl6780
  • https://www.mathnet.ru/eng/znsl/v481/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :22
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024