Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2019, Volume 481, Pages 74–86 (Mi znsl6779)  

Limiting curves for the dyadic odometer

A. R. Minabutdinov

National Research University Higher School of Economics, Department of Mathematics, St. Petersburg, Russia
References:
Abstract: A limiting curve of a stationary process in discrete time was defined by É. Janvresse, T. de la Rue, and Y. Velenik as the uniform limit of the functions
$$ t\mapsto \big(S(tl_n) - tS(l_n)\big)/R_n \in C([0, 1]), $$
where $S$ stands for the piecewise linear extension of the partial sum, $R_n := \sup |S(tl_n) - tS(l_n))|$, and $(l_n) = (l_n(\omega))$ is a suitable sequence of integers. We determine the limiting curves for the stationary sequence $(f\circ T^n(\omega))$ where $T$ is the dyadic odometer on $\{0,1\}^{\mathbb{N}}$ and
$$f((\omega_i)) = \sum\limits_{i\geq 0}\omega_iq^{i+1}$$
for $1/2 < |q| < 1.$ Namely, we prove that for a.e. $\omega$ there exists a sequence $(l_n(\omega))$ such that the limiting curve exists and is equal to $(-1)$ times the Tagaki–Landsberg function with parameter $1/2q.$ The result can be obtained as a corollary of a generalization of the Trollope–Delange formula to the $q$-weighted case.
Key words and phrases: limiting curves, weighted sum-of-binary-digits function, Takagi–Landsberg curve, $q$-analogue of the Trollope–Delange formula.
Funding agency Grant number
Russian Science Foundation 17-71-20153
The research is supported by the Russian Science Foundation (grant 17-71-20153).
Received: 19.09.2019
Document Type: Article
UDC: 517.987.5, 519.21
Language: Russian
Citation: A. R. Minabutdinov, “Limiting curves for the dyadic odometer”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XXX, Zap. Nauchn. Sem. POMI, 481, POMI, St. Petersburg, 2019, 74–86
Citation in format AMSBIB
\Bibitem{Min19}
\by A.~R.~Minabutdinov
\paper Limiting curves for the dyadic odometer
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~XXX
\serial Zap. Nauchn. Sem. POMI
\yr 2019
\vol 481
\pages 74--86
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6779}
Linking options:
  • https://www.mathnet.ru/eng/znsl6779
  • https://www.mathnet.ru/eng/znsl/v481/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :17
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024