|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 457, Pages 183–193
(Mi znsl6442)
|
|
|
|
On estimation of functions of a parameter observed in Gaussian noise
I. A. Ibragimovab a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Mathematics and Mechanics Faculty, St. Petersburg State University, St. Petersburg, Russia
Abstract:
The main problem of the paper looks as follows. A functional parameter $\theta\in\Theta\subset L_2(-\infty,\infty)$ is observed in Gaussian noise. The problem is to estimate the value $F(\theta)$ of a given function $F$. A construction of asymptotically efficient estimates for $F(\theta)$ is suggested under the conditions that $\Theta$ admits approximations by subspaces $H_T\subset L_2$ with the reproducing kernels $K_T(t, s)$, $K_T(t,t)\le T$.
Key words and phrases:
nonparametric estimation problems, estimation of functions, reproducing kernel spaces.
Received: 21.09.2017
Citation:
I. A. Ibragimov, “On estimation of functions of a parameter observed in Gaussian noise”, Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, POMI, St. Petersburg, 2017, 183–193; J. Math. Sci. (N. Y.), 238:4 (2019), 463–470
Linking options:
https://www.mathnet.ru/eng/znsl6442 https://www.mathnet.ru/eng/znsl/v457/p183
|
Statistics & downloads: |
Abstract page: | 185 | Full-text PDF : | 48 | References: | 41 |
|