|
Zapiski Nauchnykh Seminarov POMI, 2017, Volume 457, Pages 168–182
(Mi znsl6441)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Deviation inequalities for convex functions motivated by the Talagrand conjecture
N. Gozlana, M. Madimanb, C. Robertoc, P. M. Samsond a Université Paris Descartes – MAP 5 (UMR CNRS 8145), 45 rue des Saints-Pères 75270 Paris cedex 6, France
b University of Delaware, Department of Mathematical Sciences, 501 Ewing Hall, Newark DE 19716, USA
c Université Paris Ouest Nanterre La Défense – Modal'X, 200 avenue de la République 92000 Nanterre, France
d Université Paris Est Marne la Vallée – Laboratoire d'Analyse et de Mathématiques Appliquées (UMR CNRS 8050), 5 bd Descartes, 77454 Marne la Vallée Cedex 2, France
Abstract:
Motivated by Talagrand's conjecture on regularization properties of the natural semigroup on the Boolean hypercube, and in particular its continuous analogue involving regularization properties of the Ornstein-Uhlenbeck semigroup acting on integrable functions, we explore deviation inequalities for log-semiconvex functions under Gaussian measure.
Key words and phrases:
Ehrhard inequality, Talagrand conjecture, Hypercontractivity, Ornstein-Uhlenbeck semi-group.
Received: 01.06.2017
Citation:
N. Gozlan, M. Madiman, C. Roberto, P. M. Samson, “Deviation inequalities for convex functions motivated by the Talagrand conjecture”, Probability and statistics. Part 25, Zap. Nauchn. Sem. POMI, 457, POMI, St. Petersburg, 2017, 168–182; J. Math. Sci. (N. Y.), 238:4 (2019), 453–462
Linking options:
https://www.mathnet.ru/eng/znsl6441 https://www.mathnet.ru/eng/znsl/v457/p168
|
Statistics & downloads: |
Abstract page: | 138 | Full-text PDF : | 38 | References: | 32 |
|