Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 445, Pages 181–249 (Mi znsl6278)  

This article is cited in 4 scientific papers (total in 4 papers)

Geometric function theory. Jenkins results. The method of modules of curve families

G. V. Kuz'mina

St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia
Full-text PDF (439 kB) Citations (4)
References:
Abstract: Results and applications of the method of modules in geometric function theory are presented. The method was originated by J. A. Jenkins,and further development proceeded in works of the Leningrad–St. Petersburg mathematical school. A retrospective description of the origin of the method is given, and the determining role of Jenkins in the development of the method of the extremal metric is pointed out.
Key words and phrases: extremal metric, quadratic differential, trajectory, module of curve family, reduced module, extremal decomposition.
Received: 05.05.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 5, Pages 645–689
DOI: https://doi.org/10.1007/s10958-017-3324-5
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: English
Citation: G. V. Kuz'mina, “Geometric function theory. Jenkins results. The method of modules of curve families”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 181–249; J. Math. Sci. (N. Y.), 222:5 (2017), 645–689
Citation in format AMSBIB
\Bibitem{Kuz16}
\by G.~V.~Kuz'mina
\paper Geometric function theory. Jenkins results. The method of modules of curve families
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 181--249
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3511162}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 645--689
\crossref{https://doi.org/10.1007/s10958-017-3324-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015799821}
Linking options:
  • https://www.mathnet.ru/eng/znsl6278
  • https://www.mathnet.ru/eng/znsl/v445/p181
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:361
    Full-text PDF :88
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024