Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 445, Pages 250–267 (Mi znsl6279)  

Extreme values of Epstein zeta-functions

O. M. Fomenko

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $Q(u_1,u_2,\dots,u_l)$ be a positive definite quadratic form in $l(\geq2)$ variables and with integer coefficients. Put
$$ \zeta_Q(s)=\sum'(Q(u_1,u_2,\dots,u_l))^{-s} $$
where the accent indicates that the summation is over all integer $l$-tuples $(u_1,u_2,\dots,u_l)$ with the exception of $(0,0,\dots,0)$. It is known that $\zeta_Q(s)\big(s-\frac l2\big)$ is an entire function.
We treat $\Omega$-theorems for $\zeta_Q(s)l\leq3)$ and for some $\zeta_Q(s)(l=2)$. Let $l\leq4$ and $F_Q(s)=\zeta_Q\big(s+\frac l2-1\big)$. As $t$ tends to infinity, we have
$$ \log\bigg|F_Q\biggl(\frac12+it\biggr)\bigg|=\Omega_+\bigg(\bigg(\frac{\log t}{\log\log t}\bigg)^{1/2}\bigg), $$
and
$$ \log |F_Q(\sigma_0+it)|=\Omega_+\bigg(\frac{(\log t)^{1-\sigma_0}}{\log\log t}\bigg) $$
for fixed $\sigma_0\in\big(\frac12,1\big)$.
Key words and phrases: Epstein zeta-function, quadratic form, extremal value.
Received: 09.03.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 5, Pages 690–702
DOI: https://doi.org/10.1007/s10958-017-3325-4
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Extreme values of Epstein zeta-functions”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 250–267; J. Math. Sci. (N. Y.), 222:5 (2017), 690–702
Citation in format AMSBIB
\Bibitem{Fom16}
\by O.~M.~Fomenko
\paper Extreme values of Epstein zeta-functions
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 250--267
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6279}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3511163}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 690--702
\crossref{https://doi.org/10.1007/s10958-017-3325-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015671680}
Linking options:
  • https://www.mathnet.ru/eng/znsl6279
  • https://www.mathnet.ru/eng/znsl/v445/p250
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :40
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024