Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 223, Pages 263–279 (Mi znsl4391)  

This article is cited in 1 scientific paper (total in 1 paper)

Combinatorial and algorithmic methods

Asymptotics of random convex polygonal lines

B. N. Vilkov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (725 kB) Citations (1)
Abstract: The present paper deals with the limit shape of random plane convex polygonal lines whose edges are independent and identically distributed, with finite first moment. The smoothness of a limit curve depends on some properties of the distribution. The limit curve is determined by the projection of the distribution to the unit circle. This correspondence between limit curves and measures on the unit circle is proved to be a bijection.
The emphasis is on limit distributions of deviations of random polygonal lines from a limit curve. Normed differences of Minkowski support functions converge to a Gaussian limit process. The covariance of this process can be found in terms of the initial distribution. In the case of uniform distribution on the unit circle, a formula for the covariance is found. The main result is that a.s. sample functions of the limit process have continuous first derivative satisfying the Hölder condition of order $a$, for any fixed $a$ with $0<a<1/2$. Bibliography: 7 titles.
Received: 20.06.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 6, Pages 4147–4156
DOI: https://doi.org/10.1007/BF02355809
Bibliographic databases:
Document Type: Article
UDC: 514.172.45
Language: Russian
Citation: B. N. Vilkov, “Asymptotics of random convex polygonal lines”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Zap. Nauchn. Sem. POMI, 223, POMI, St. Petersburg, 1995, 263–279; J. Math. Sci. (New York), 87:6 (1997), 4147–4156
Citation in format AMSBIB
\Bibitem{Vil95}
\by B.~N.~Vilkov
\paper Asymptotics of random convex polygonal lines
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 223
\pages 263--279
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4391}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374324}
\zmath{https://zbmath.org/?q=an:0909.60020|0887.60018}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 6
\pages 4147--4156
\crossref{https://doi.org/10.1007/BF02355809}
Linking options:
  • https://www.mathnet.ru/eng/znsl4391
  • https://www.mathnet.ru/eng/znsl/v223/p263
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024