Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1995, Volume 223, Pages 280–312 (Mi znsl4392)  

This article is cited in 2 scientific papers (total in 2 papers)

Combinatorial and algorithmic methods

The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions

I. A. Pushkarev

Saint-Petersburg State University
Abstract: Let $u_1=1$, $u_2=2$, $u_3,\dots$ be the sequence of Fibonacci numbers. A Fibonacci partition of a natural number $n$ is a partition of $n$ into different Fibonacci numbers. In this paper it is proved that the set of Fibonacci partitions of a natural number, partially ordered with respect to refinement is the lattice of ideals of a multizigzag. On the basis of this theorem we obtain some results concerning the coefficients of the Taylor series of infinite products
$$ \prod_{i=1}^{+\infty}(1+zq^{u_i})=1+\sum_{k=1}^{+\infty}a_k(z)q^k, $$
where $z=\pm1$, $-\frac12\pm i\frac{\sqrt3}2$, $\pm i$. Bibliography: 6 titles.
Received: 10.05.1995
English version:
Journal of Mathematical Sciences (New York), 1997, Volume 87, Issue 6, Pages 4157–4179
DOI: https://doi.org/10.1007/BF02355810
Bibliographic databases:
Document Type: Article
UDC: 519.117
Language: Russian
Citation: I. A. Pushkarev, “The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part I, Zap. Nauchn. Sem. POMI, 223, POMI, St. Petersburg, 1995, 280–312; J. Math. Sci. (New York), 87:6 (1997), 4157–4179
Citation in format AMSBIB
\Bibitem{Pus95}
\by I.~A.~Pushkarev
\paper The lattices of ideals of multizigzags and the enumeration of Fibonacci partitions
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 1995
\vol 223
\pages 280--312
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl4392}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1374325}
\zmath{https://zbmath.org/?q=an:0909.05003|0884.05007}
\transl
\jour J. Math. Sci. (New York)
\yr 1997
\vol 87
\issue 6
\pages 4157--4179
\crossref{https://doi.org/10.1007/BF02355810}
Linking options:
  • https://www.mathnet.ru/eng/znsl4392
  • https://www.mathnet.ru/eng/znsl/v223/p280
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :161
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024