Abstract:
A mathematical model describing the gravitational convection of isothermally incompressible liquid in closed cavity is proposed. The initial boundary value problem for governing equations system is formulated. The existence and uniqueness theorem for the problem with small values of the Boussinesq parameter is proved. Bibl. 6 titles.
Citation:
V. V. Pukhnachov, “Solvability of initial boundary value problem in non-standard model of convection”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 217–226; J. Math. Sci. (New York), 93:5 (1999), 772–778
\Bibitem{Puk96}
\by V.~V.~Pukhnachov
\paper Solvability of initial boundary value problem in non-standard model of convection
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 233
\pages 217--226
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699124}
\zmath{https://zbmath.org/?q=an:0928.76107}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 93
\issue 5
\pages 772--778
\crossref{https://doi.org/10.1007/BF02366853}
Linking options:
https://www.mathnet.ru/eng/znsl3669
https://www.mathnet.ru/eng/znsl/v233/p217
This publication is cited in the following 1 articles:
V.B. Bekezhanova, “Analysis of the characteristic perturbations spectrum of the exact invariant solution of the microconvection equations”, International Journal of Heat and Mass Transfer, 118 (2018), 570