Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 299, Pages 54–86 (Mi znsl1033)  

This article is cited in 1 scientific paper (total in 1 paper)

On a question of Bellman

V. A. Zalgaller
Full-text PDF (414 kB) Citations (1)
References:
Abstract: From a random point $O$ in an infinite strip of width 1 we move in a randomly chosen direction along a curve $\Gamma$. What shape of $\Gamma$ gives the minimum value to the expectation of the length of the path that reaches the boundary of the strip? After certain arguments in support that the desired curve belongs to one of four classes, it is proved that the best curve in those classes consists of four parts: an interval $OA$ of length $a$, its smooth continuation, an arc $AB$ of radius 1 and small length $\varphi$, an interval $BD$ that is smooth continuation of the arc, and an interval $DF$ (with a corner at the point $D$). If we take $O$ as the origin and $OA$ as the $x$ axis of a system of coordinates, then the coordinates of the above-mentioned points will be: $A(a,0)$, $B(a+\sin\varphi,1-\cos\varphi)$, $F(a,1)$,
$$ D\left(a+\frac{\cos\varphi\sqrt{1+a^2}-a}{\cos\varphi-a \sin\varphi}, 1-\frac{\sin\varphi\sqrt{1+a^2}}{\cos\varphi-a\sin\varphi}\right). $$
For the best curve we have: $a\approx0.814$, $\varphi\approx0.032$. Related questions are discussed.
Received: 25.12.2001
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 131, Issue 1, Pages 5286–5306
DOI: https://doi.org/10.1007/s10958-005-0402-x
Bibliographic databases:
UDC: 514.177.2+517.977.5
Language: Russian
Citation: V. A. Zalgaller, “On a question of Bellman”, Geometry and topology. Part 8, Zap. Nauchn. Sem. POMI, 299, POMI, St. Petersburg, 2003, 54–86; J. Math. Sci. (N. Y.), 131:1 (2005), 5286–5306
Citation in format AMSBIB
\Bibitem{Zal03}
\by V.~A.~Zalgaller
\paper On a~question of Bellman
\inbook Geometry and topology. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 299
\pages 54--86
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2038255}
\zmath{https://zbmath.org/?q=an:05312856}
\elib{https://elibrary.ru/item.asp?id=13480134}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 131
\issue 1
\pages 5286--5306
\crossref{https://doi.org/10.1007/s10958-005-0402-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl1033
  • https://www.mathnet.ru/eng/znsl/v299/p54
  • This publication is cited in the following 1 articles:
    1. David Kübel, Elmar Langetepe, “On the approximation of shortest escape paths”, Computational Geometry, 93 (2021), 101709  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :93
    References:33
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025