Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2003, Volume 299, Pages 87–108 (Mi znsl1034)  

This article is cited in 2 scientific papers (total in 2 papers)

Shortest inspection curves for a sphere

V. A. Zalgaller
Full-text PDF (543 kB) Citations (2)
References:
Abstract: What is the form of the shortest curve $C$ going outside the unit sphere $S$ in $\mathbb R^3$ such that passing along $C$ we can see all points of $S$ from outside? How will the form of $C$ change if we require that $C$ have one of its (or both) endpoints on $S$? A solution to the latter problem also answers the following question. You are in a half-space at a unit distance from the boundary plane $P$, but do not know where $P$ is. What is the shortest space curve $C$ such that going along $C$ you certainly will come to $P$? Geometric arguments are given suggesting that the required curves should be looked for in certain classes depending on several parameters. A computer analysis yields the best curves in the classes. Some other questions are solved in a similar way.
Received: 25.12.2001
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 131, Issue 1, Pages 5307–5321
DOI: https://doi.org/10.1007/s10958-005-0403-9
Bibliographic databases:
UDC: 514.177.2+517.977.5
Language: Russian
Citation: V. A. Zalgaller, “Shortest inspection curves for a sphere”, Geometry and topology. Part 8, Zap. Nauchn. Sem. POMI, 299, POMI, St. Petersburg, 2003, 87–108; J. Math. Sci. (N. Y.), 131:1 (2005), 5307–5321
Citation in format AMSBIB
\Bibitem{Zal03}
\by V.~A.~Zalgaller
\paper Shortest inspection curves for a~sphere
\inbook Geometry and topology. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2003
\vol 299
\pages 87--108
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1034}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2038256}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 131
\issue 1
\pages 5307--5321
\crossref{https://doi.org/10.1007/s10958-005-0403-9}
Linking options:
  • https://www.mathnet.ru/eng/znsl1034
  • https://www.mathnet.ru/eng/znsl/v299/p87
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :173
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024