Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2013, Volume 6, Issue 3, Pages 59–66 (Mi vyuru6)  

Mathematical Modelling

On the mean-value property for polyharmonic functions

V. V. Karachik

South Ural State University, Chelyabinsk
References:
Abstract: The mean-value property for normal derivatives of polyharmonic function on the unit sphere is obtained. The value of integral over the unit sphere of normal derivative of $m$th order of polyharmonic function is expressed through the values of the Laplacian's powers of this function at the origin. In particular, it is established that the integral over the unit sphere of normal derivative of degree not less then $2k-1$ of $k$-harmonic function is equal to zero. The values of polyharmonic function and its Laplacian's powers at the center of the unit ball are found. These values are expressed through the integral over the unit sphere of a linear combination of the normal derivatives up to $k-1$ degree for the $k$-harmonic function. Some illustrative examples are given.
Keywords: polyharmonic functions, mean-value property, normal derivatives on a sphere.
Received: 29.04.2013
Document Type: Article
UDC: 517.575
MSC: 31B30
Language: English
Citation: V. V. Karachik, “On the mean-value property for polyharmonic functions”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:3 (2013), 59–66
Citation in format AMSBIB
\Bibitem{Kar13}
\by V.~V.~Karachik
\paper On the mean-value property for polyharmonic functions
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2013
\vol 6
\issue 3
\pages 59--66
\mathnet{http://mi.mathnet.ru/vyuru6}
Linking options:
  • https://www.mathnet.ru/eng/vyuru6
  • https://www.mathnet.ru/eng/vyuru/v6/i3/p59
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :83
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024