Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2013, Volume 5, Issue 2, Pages 39–44 (Mi vyurm73)  

Mathematics

About extension of homeomorphisms over zero-dimensional homogeneous spaces

S. V. Medvedev

South Ural State University
References:
Abstract: Let $X$ be a zero-dimensional homogeneous space satisfying the first axiom of countability. We prove the theorem about an extension of a homeomorphism $g: A\to B$ to a homeomorphism $f: X\to X$, where $A$ and $B$ are countable disjoint compact subsets of the space $X$. If, additionally, $X$ is a non-pseudocompact space, then the homeomorphism $g$ is extendable to a homeomorphism $f: X\to X\setminus A$.
Keywords: homogeneous space; homeomorphism; first axiom of countability; pseudocompact space.
Received: 30.05.2013
Document Type: Article
UDC: 515.126
Language: Russian
Citation: S. V. Medvedev, “About extension of homeomorphisms over zero-dimensional homogeneous spaces”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013), 39–44
Citation in format AMSBIB
\Bibitem{Med13}
\by S.~V.~Medvedev
\paper About extension of homeomorphisms over zero-dimensional homogeneous spaces
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2013
\vol 5
\issue 2
\pages 39--44
\mathnet{http://mi.mathnet.ru/vyurm73}
Linking options:
  • https://www.mathnet.ru/eng/vyurm73
  • https://www.mathnet.ru/eng/vyurm/v5/i2/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :92
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024