Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2013, Volume 5, Issue 2, Pages 31–38 (Mi vyurm72)  

Mathematics

Algorithmic solution of the five-point pose problem based on the Cayley representation of rotation matrices

E. V. Martyushev

South Ural State University
References:
Abstract: A new algorithmic solution to the five-point relative pose problem is introduced. Our approach is not connected with or based on the famous cubic constraint on an essential matrix. Instead, we use the Cayley representation of rotation matrices in order to obtain a polynomial system of equations from epipolar constraints. Solving that system, we directly obtain positional relationships and orientations of the cameras through the roots for a 10th degree polynomial.
Keywords: five-point pose problem; calibrated camera; epipolar constraints; Cayley representation.
Received: 18.02.2013
Document Type: Article
UDC: 519.688, 519.615.5
Language: Russian
Citation: E. V. Martyushev, “Algorithmic solution of the five-point pose problem based on the Cayley representation of rotation matrices”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013), 31–38
Citation in format AMSBIB
\Bibitem{Mar13}
\by E.~V.~Martyushev
\paper Algorithmic solution of the five-point pose problem based on the Cayley representation of rotation matrices
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2013
\vol 5
\issue 2
\pages 31--38
\mathnet{http://mi.mathnet.ru/vyurm72}
Linking options:
  • https://www.mathnet.ru/eng/vyurm72
  • https://www.mathnet.ru/eng/vyurm/v5/i2/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :150
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024