Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2022, Volume 14, Issue 3, Pages 45–51
DOI: https://doi.org/10.14529/mmph220305
(Mi vyurm526)
 

Mathematics

Analysis of the class of hydrodynamic systems

O. P. Matveevaa, T. G. Sukachevaba

a Novgorod State University, Velikiy Novgorod, Russian Federation
b South Ural State University, Chelyabinsk, Russian Federation
References:
Abstract: The solvability of the Cauchy-Dirichlet problem for the generalized homogeneous model of the dynamics of the high-order viscoelastic incompressible Kelvin-Voigt fluid is considered. In the study, the theory of semilinear equations of the Sobolev type was used. The indicated problem for the system of differential equations in partial derivatives is reduced to the Cauchy problem for the indicated type of the equation. The theorem on the existence of the unique solution of this problem, which is a quasi-stationary trajectory, is proved, and its phase space is described.
Keywords: Sobolev type equation, phase space, viscoelastic incompressible fluid.
Received: 23.06.2022
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: English
Citation: O. P. Matveeva, T. G. Sukacheva, “Analysis of the class of hydrodynamic systems”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:3 (2022), 45–51
Citation in format AMSBIB
\Bibitem{MatSuk22}
\by O.~P.~Matveeva, T.~G.~Sukacheva
\paper Analysis of the class of hydrodynamic systems
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2022
\vol 14
\issue 3
\pages 45--51
\mathnet{http://mi.mathnet.ru/vyurm526}
\crossref{https://doi.org/10.14529/mmph220305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4408422}
Linking options:
  • https://www.mathnet.ru/eng/vyurm526
  • https://www.mathnet.ru/eng/vyurm/v14/i3/p45
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:52
    Full-text PDF :19
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024