Loading [MathJax]/jax/output/SVG/config.js
Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2015, Volume 7, Issue 4, Pages 5–10
DOI: https://doi.org/10.14529/mmph150401
(Mi vyurm271)
 

This article is cited in 6 scientific papers (total in 6 papers)

Mathematics

The start control and final observation problem for a quasi-linear Sobolev type equation

E. A. Bogatyreva

South Ural State University, Chelyabinsk, Russia
Full-text PDF (446 kB) Citations (6)
References:
Abstract: Sufficient solvability conditions of the start control and final observation problem in a weak gener- alized meaning for one abstract quasilinear Sobolev type equation are obtained. Sobolev type equations constitute a large area of nonclassical equations of mathematical physics. Techniques used in this article originated in the theory of semilinear Sobolev type equations. Solvability of the start control and final observation problem for the Barenblatt–Gilman model describing the nonequilibrium countercurrent capillary impregnation was proved on the basis of abstract results. The unknown function corresponds to effective saturation. The main equation of this model is nonlinear and implicit with respect to the time derivative which makes it quite difficult to study. Formulation of this problem agrees with consideration of the effect of disequilibrium, which is the characteristic feature of the considered model.
Keywords: quasi-linear Sobolev type equations; start control and final observation problem; weak generalized solution; Barenblatt–Gilman model.
Received: 29.07.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: E. A. Bogatyreva, “The start control and final observation problem for a quasi-linear Sobolev type equation”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:4 (2015), 5–10
Citation in format AMSBIB
\Bibitem{Bog15}
\by E.~A.~Bogatyreva
\paper The start control and final observation problem for a quasi-linear Sobolev type equation
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2015
\vol 7
\issue 4
\pages 5--10
\mathnet{http://mi.mathnet.ru/vyurm271}
\crossref{https://doi.org/10.14529/mmph150401}
\elib{https://elibrary.ru/item.asp?id=24389497}
Linking options:
  • https://www.mathnet.ru/eng/vyurm271
  • https://www.mathnet.ru/eng/vyurm/v7/i4/p5
  • This publication is cited in the following 6 articles:
    1. K. V. Perevozchikova, N. A. Manakova, “Investigation of boundary control and final observation in mathematical model of motion speed potentials distribution of filtered liquid free surface”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 16:2 (2023), 111–116  mathnet  crossref
    2. K. V. Perevozhikova, N. A. Manakova, “Chislennoe modelirovanie startovogo upravleniya i finalnogo nablyudeniya v modeli filtratsii zhidkosti”, J. Comp. Eng. Math., 8:1 (2021), 29–45  mathnet  crossref
    3. K. V. Vasiuchkova, “Chislennoe issledovanie dlya zadachi startovogo upravleniya i finalnogo nablyudeniya v modeli raspredeleniya potentsialov v kristallicheskom poluprovodnike”, J. Comp. Eng. Math., 6:3 (2019), 54–68  mathnet  crossref
    4. N. A. Manakova, K. V. Vasiuchkova, “Numerical investigation for the start control and final observation problem in model of an I-beam deformation”, J. Comp. Eng. Math., 4:2 (2017), 26–40  mathnet  crossref  mathscinet  elib
    5. N. A. Manakova, “On modified method of multistep coordinate descent for optimal control problem for semilinear Sobolev-type model”, J. Comp. Eng. Math., 3:4 (2016), 59–72  mathnet  crossref  mathscinet  elib
    6. N. A. Manakova, E. A. Bogatyreva, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2016, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :82
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025