Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2015, Volume 7, Issue 3, Pages 22–29 (Mi vyurm262)  

Mathematics

The optimal control problem for the model of dynamics of weakly viscoelastic fluid

N. A. Manakova

South Ural State University
References:
Abstract: In this article we study the optimal control of solutions of the Dirichlet–Showalter–Sidorov problem for the system of equations of Kelvin–Voight zero order fluid motion, which is called a system of Oskolkov equations. The case of the degenerate equation is considered. Existence of global in time weak generalized solution of the model in the space of solenoidal functions is proved. The existence of optimal control of weak generalized solutions of Showalter–Sidorov problem for abstract semilinear Sobolev type equation is shown. The obtained abstract results are applied to the Oskolkov model.
Keywords: the system of Oskolkov equations; the optimal control problem; Sobolev type equations.
Received: 15.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. A. Manakova, “The optimal control problem for the model of dynamics of weakly viscoelastic fluid”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015), 22–29
Citation in format AMSBIB
\Bibitem{Man15}
\by N.~A.~Manakova
\paper The optimal control problem for the model of dynamics of weakly viscoelastic fluid
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2015
\vol 7
\issue 3
\pages 22--29
\mathnet{http://mi.mathnet.ru/vyurm262}
\elib{https://elibrary.ru/item.asp?id=23730237}
Linking options:
  • https://www.mathnet.ru/eng/vyurm262
  • https://www.mathnet.ru/eng/vyurm/v7/i3/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025