Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2015, Volume 7, Issue 3, Pages 16–21 (Mi vyurm261)  

Mathematics

Conway–Gordon problem for reduced complete spatial graphs

Ph. G. Korablevab, A. A. Kazakovb

a Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences
b Chelyabinsk State University
References:
Abstract: This paper is devoted to $\mathrm{3D}$ embeddable graphs, which are obtained from full spatial graphs by removing several edges incident to one vertex. For all such graphs we introduce the analogue of Conway–Gordon function $\omega_2$. We prove that its value is zero for all spatial graphs obtained from full graphs with no less than eight vertices. There are examples of graphs with six vertices, where the value of this function is equal to unity.
Keywords: spatial graph; Hamiltonian cycle basis; link.
Received: 04.03.2015
Bibliographic databases:
Document Type: Article
UDC: 515.162.8
Language: Russian
Citation: Ph. G. Korablev, A. A. Kazakov, “Conway–Gordon problem for reduced complete spatial graphs”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:3 (2015), 16–21
Citation in format AMSBIB
\Bibitem{KorKaz15}
\by Ph.~G.~Korablev, A.~A.~Kazakov
\paper Conway--Gordon problem for reduced complete spatial graphs
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2015
\vol 7
\issue 3
\pages 16--21
\mathnet{http://mi.mathnet.ru/vyurm261}
\elib{https://elibrary.ru/item.asp?id=23730236}
Linking options:
  • https://www.mathnet.ru/eng/vyurm261
  • https://www.mathnet.ru/eng/vyurm/v7/i3/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025