Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, Volume 28, Issue 2, Pages 193–198
DOI: https://doi.org/10.20537/vm180205
(Mi vuu630)
 

This article is cited in 13 scientific papers (total in 13 papers)

MATHEMATICS

Multiple capture of a given number of evaders in the problem of a simple pursuit

N. N. Petrova, A. Ya. Narmanovb

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b National University of Uzbekistan, ul. Universitetskaya, 4, Tashkent, 100174, Uzbekistan
References:
Abstract: In the finite-dimensional Euclidean space, the problem of a group of pursuers pursuing a group of evaders is considered, which is described by the system
˙zij=uivj,ui,vjV.˙zij=uivj,ui,vjV.
The set of admissible controls is a convex compact, and the target's sets are the origin of coordinates. The aim of the group of pursuers is to carry out an rr-fold capture of at least qq evaders. Additionally, it is assumed that the evaders use program strategies and that each pursuer can catch no more than one evader. We obtain necessary and sufficient conditions for the solvability of the pursuit problem. For the proof we use the Hall theorem on the system of various representatives.
Keywords: differential game, group pursuit, pursuer, evader.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-41005_Узб_т
Received: 03.06.2018
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N75, 91A23
Language: Russian
Citation: N. N. Petrov, A. Ya. Narmanov, “Multiple capture of a given number of evaders in the problem of a simple pursuit”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:2 (2018), 193–198
Citation in format AMSBIB
\Bibitem{PetNar18}
\by N.~N.~Petrov, A.~Ya.~Narmanov
\paper Multiple capture of a given number of evaders in the problem of a simple pursuit
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 2
\pages 193--198
\mathnet{http://mi.mathnet.ru/vuu630}
\crossref{https://doi.org/10.20537/vm180205}
\elib{https://elibrary.ru/item.asp?id=35258686}
Linking options:
  • https://www.mathnet.ru/eng/vuu630
  • https://www.mathnet.ru/eng/vuu/v28/i2/p193
  • This publication is cited in the following 13 articles:
    1. N. N. Petrov, N. A. Solov'eva, “Multiple Capture of a Given Number of Evaders in L. S. Pontryagin's Recurrent Example”, J Math Sci, 2024  crossref
    2. A. I. Blagodatskikh, “Sinkhronnaya realizatsiya odnovremennykh mnogokratnykh poimok ubegayuschikh”, Izv. IMI UdGU, 61 (2023), 3–26  mathnet  crossref
    3. B. T. Samatov, U. B. Soyibboev, “Differential game with “lifeline” for Pontryagin's control example”, Izv. IMI UdGU, 61 (2023), 94–113  mathnet  crossref
    4. N. N. Petrov, “Dvukratnaya poimka skoordinirovannykh ubegayuschikh v zadache prostogo presledovaniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 33:2 (2023), 281–292  mathnet  crossref
    5. A. I. Blagodatskikh, A. S. Bannikov, “Odnovremennaya mnogokratnaya poimka pri nalichii zaschitnikov ubegayuschego”, Izv. IMI UdGU, 62 (2023), 10–29  mathnet  crossref
    6. Nikolay N. Petrov, “On the Problem of Pursuing Two Coordinated Evaders in Linear Recurrent Differential Games”, J Optim Theory Appl, 197:3 (2023), 1011  crossref
    7. N. N. Petrov, N. A. Solov'eva, “Problem of multiple capture of given number of evaders in recurrent differential games”, Sib. elektron. matem. izv., 19:1 (2022), 371–377  mathnet  crossref  mathscinet
    8. N. N. Petrov, “Ob odnoi zadache prostogo presledovaniya dvukh zhestko skoordinirovannykh ubegayuschikh”, Izv. IMI UdGU, 59 (2022), 55–66  mathnet  crossref
    9. B. T. Samatov, A. Kh. Akbarov, B. I. Zhuraev, “Pursuit–evasion differential games with Gr-constraints on controls”, Izv. IMI UdGU, 59 (2022), 67–84  mathnet  crossref  mathscinet
    10. V. I. Ukhobotov, V. N. Ushakov, “Ob odnoi zadache upravleniya s pomekhoi i vektogrammami, zavisyaschimi lineino ot zadannykh mnozhestv”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:3 (2020), 429–443  mathnet  crossref
    11. N. N. Petrov, N. A. Soloveva, “Mnogokratnaya poimka zadannogo chisla ubegayuschikh v rekurrentnom primere L. S. Pontryagina”, Materialy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i ikh prilozheniya», posvyaschennoi 85-letiyu professora M. T. Terekhina. Ryazanskii gosudarstvennyi universitet im. S.A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 186, VINITI RAN, M., 2020, 108–115  mathnet  crossref  elib
    12. N. N. Petrov, A. I. Machtakova, “Poimka dvukh skoordinirovannykh ubegayuschikh v zadache s drobnymi proizvodnymi, fazovymi ogranicheniyami i prostoi matritsei”, Izv. IMI UdGU, 56 (2020), 50–62  mathnet  crossref
    13. N. N. Petrov, A. Ya. Narmanov, “Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S105–S115  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:583
    Full-text PDF :243
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025