Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, Volume 28, Issue 2, Pages 176–192
DOI: https://doi.org/10.20537/vm180204
(Mi vuu629)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On $\mathcal{L}$-injective modules

A. R. Mehdi

Department of Mathematics, College of Education, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
Full-text PDF (330 kB) Citations (1)
References:
Abstract: Let $\mathcal{M}=\{(M,N,f,Q)\mid M,N,Q\in R\text{-Mod}, \,N\leq M,\,f\in \text{Hom}_{R}(N,Q)\}$ and let $\mathcal{L}$ be a nonempty subclass of $\mathcal{M}.$ Jirásko introduced the concept of $\mathcal{L}$-injective module as a generalization of injective module as follows: a module $Q$ is said to be $\mathcal{L}$-injective if for each $(B,A,f,Q)\in \mathcal{L}$ there exists a homomorphism $g\colon B\rightarrow Q$ such that $g(a)=f(a),$ for all $a\in A$. The aim of this paper is to study $\mathcal{L}$-injective modules and some related concepts. Some characterizations of $\mathcal{L}$-injective modules are given. We present a version of Baer's criterion for $\mathcal{L}$-injectivity. The concepts of $\mathcal{L}$-$M$-injective module and $s$-$\mathcal{L}$-$M$-injective module are introduced as generalizations of $M$-injective modules and give some results about them. Our version of the generalized Fuchs criterion is given. We obtain conditions under which the class of $\mathcal{L}$-injective modules is closed under direct sums. Finally, we introduce and study the concept of $\sum$-$\mathcal{L}$-injectivity as a generalization of $\sum$-injectivity and $\sum$-$\tau$-injectivity.
Keywords: injective module, generalized fuchs criterion, hereditary torsion theory, $t$-dense, preradical, natural class.
Received: 03.02.2018
Bibliographic databases:
Document Type: Article
UDC: 512.553.3
MSC: 16D50, 16D10, 16S90
Language: English
Citation: A. R. Mehdi, “On $\mathcal{L}$-injective modules”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:2 (2018), 176–192
Citation in format AMSBIB
\Bibitem{Meh18}
\by A.~R.~Mehdi
\paper On $\mathcal{L}$-injective modules
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2018
\vol 28
\issue 2
\pages 176--192
\mathnet{http://mi.mathnet.ru/vuu629}
\crossref{https://doi.org/10.20537/vm180204}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467764800004}
\elib{https://elibrary.ru/item.asp?id=35258685}
Linking options:
  • https://www.mathnet.ru/eng/vuu629
  • https://www.mathnet.ru/eng/vuu/v28/i2/p176
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :107
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024