Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2021, Volume 26, Issue 135, Pages 315–336
DOI: https://doi.org/10.20310/2686-9667-2021-26-135-315-336
(Mi vtamu234)
 

Scientific articles

Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version

G. F. Helmincka, J. A. Weeninkb

a Korteweg-de Vries Institute, University of Amsterdam
b Bernoulli Institute, University of Groningen
References:
Abstract: The $k[S]$-hierarchy and its strict version are two deformations of the commutative algebra $k[S]$, $k=\mathbb{R}$ or $\mathbb{C},$ in the $\mathbb{N} \times \mathbb{N}$-matrices, where $S$ is the matrix of the shift operator. In this paper we show first of all that both deformations correspond to conjugating $k[S]$ with elements from an appropriate group. The dressing matrix of the deformation is unique in the case of the $k[S]$-hierarchy and it is determined up to a multiple of the identity in the strict case. This uniqueness enables one to prove directly the equivalence of the Lax form of the k[S]-hierarchy with a set of Sato–Wilson equations. The analogue of the Sato–Wilson equations for the strict $k[S]$-hierarchy always implies the Lax equations of this hierarchy. Both systems are equivalent if the setting one works in, is Cauchy solvable in dimension one. Finally we present a Banach Lie group $ G(\mathcal{S}_{2}),$ two subgroups $ P_{+}(H)$ and $ U_{+}(H)$ of $G(\mathcal{S}_{2}),$ with $ U_{+}(H) \subset P_{+}(H),$ such that one can construct from the homogeneous spaces $G(\mathcal{S}_{2})/ P_{+}(H)$ resp. $G(\mathcal{S}_{2})/U_{+}(H)$ solutions of respectively the $k[S]$-hierarchy and its strict version.
Keywords: homogeneous spaces, integrable hierarchies, Lax equations, Sato-Wilson form, wave matrices.
Received: 17.06.2021
Document Type: Article
UDC: 512.71, 512.56, 517.95
Language: English
Citation: G. F. Helminck, J. A. Weenink, “Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version”, Russian Universities Reports. Mathematics, 26:135 (2021), 315–336
Citation in format AMSBIB
\Bibitem{HelWee21}
\by G.~F.~Helminck, J.~A.~Weenink
\paper Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version
\jour Russian Universities Reports. Mathematics
\yr 2021
\vol 26
\issue 135
\pages 315--336
\mathnet{http://mi.mathnet.ru/vtamu234}
\crossref{https://doi.org/10.20310/2686-9667-2021-26-135-315-336}
Linking options:
  • https://www.mathnet.ru/eng/vtamu234
  • https://www.mathnet.ru/eng/vtamu/v26/i135/p315
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :29
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024