Abstract:
For a multivalued mapping F:[a,b]×Rm→comp(Rn), the problem of superpositional measurability and superpositional selectivity is considered.
As it is known, for superpositional measurability it is sufficient that the mapping F satisfies the Caratheodory conditions, for superpositional selectivity it is sufficient that F(⋅,x) has a measurable section and F(t,⋅) is upper semicontinuous. In this paper, we propose generalizations of these conditions based on the replacement, in the definitions of continuity and semicontinuity, of the limit of the sequence of coordinates of points in the images of multivalued mappings to a one-sided limit. It is shown that under such weakened conditions the multivalued mapping F possesses the required properties of superpositional measurability / superpositional selectivity. Illustrative examples are given, as well as examples of the significance of the proposed conditions. For single-valued mappings, the proposed conditions coincide with the generalized Caratheodory conditions proposed by I.V. Shragin (see [Bulletin of the Tambov University. Series: natural and technical sciences, 2014, 19:2, 476–478]).
Keywords:
the Caratheodory condition, the Nemytsky multivalued operator, superpositional measurability, superpositional selectivity.
The work is partially supported by the Russian Science Foundation (projects no. 20-11-20131).
Received: 02.07.2021
Bibliographic databases:
Document Type:
Article
UDC:517.922, 517.927.4
Language: Russian
Citation:
I. D. Serova, “Superpositional measurability of a multivalued function under generalized Сaratheodory conditions”, Russian Universities Reports. Mathematics, 26:135 (2021), 305–314
\Bibitem{Ser21}
\by I.~D.~Serova
\paper Superpositional measurability of a multivalued function under generalized Сaratheodory conditions
\jour Russian Universities Reports. Mathematics
\yr 2021
\vol 26
\issue 135
\pages 305--314
\mathnet{http://mi.mathnet.ru/vtamu233}
\crossref{https://doi.org/10.20310/2686-9667-2021-26-135-305-314}
\elib{https://elibrary.ru/item.asp?id=46664957}
Linking options:
https://www.mathnet.ru/eng/vtamu233
https://www.mathnet.ru/eng/vtamu/v26/i135/p305
This publication is cited in the following 5 articles:
M. Zh. Alves, E. V. Alves, Zh. Munembe, Yu. V. Nepomnyaschikh, “Lineinye i nelineinye integralnye funktsionaly v prostranstve nepreryvnykh vektor-funktsii”, Vestnik rossiiskikh universitetov. Matematika, 28:142 (2023), 111–124
N. S. Borzov, T. V. Zhukovskaya, I. D. Serova, “Obyknovennye differentsialnye uravneniya i differentsialnye uravneniya s zapazdyvaniem: obschie svoistva i osobennosti”, Vestnik rossiiskikh universitetov. Matematika, 28:142 (2023), 137–154
E. S. Zhukovskiy, I. D. Serova, “On a Control Problem for a System of Implicit Differential Equations”, Differentsialnye uravneniya, 59:9 (2023), 1283
S. Benarab, E. A. Panasenko, “Ob odnom vklyuchenii s otobrazheniem, deistvuyuschim iz chastichno uporyadochennogo prostranstva v mnozhestvo s refleksivnym binarnym otnosheniem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:3 (2022), 361–382
V. Merchela, “Odin metod issledovaniya razreshimosti kraevykh zadach dlya neyavnogo differentsialnogo uravneniya”, Vestnik rossiiskikh universitetov. Matematika, 26:136 (2021), 404–413