Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2023, Volume 27, Number 3, Pages 407–426
DOI: https://doi.org/10.14498/vsgtu2014
(Mi vsgtu2014)
 

Differential Equations and Mathematical Physics

Stability and convergence of the locally one-dimensional scheme A. A. Samarskii, approximating the multidimensional integro-differential equation of convection-diffusion with inhomogeneous boundary conditions of the first kind

Z. V. Beshtokova

Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center of RAS, Nalchik, 360000, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: The first initial-boundary value problem for a multidimensional (in space variables) integro-differential equation of convection-diffusion is studied. For an approximate solution of the problem a locally one-dimensional scheme by A. A. Samarskii with order of approximation $O(h^2+\tau)$ is proposed. The study of the uniqueness and stability of the solution is carried out using the method of energy inequalities. A priori estimates for the solution of a locally one-dimensional difference scheme are obtained, which imply the uniqueness of the solution, the continuous and uniform dependence of the solution on the input data, and the convergence of the solution of the scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme. For a two-dimensional problem, a numerical solution algorithm is constructed, numerical calculations of test cases are carried out, illustrating the theoretical results obtained in the study.
Keywords: convection-diffusion equation, first initial boundary value problem, nonlocal source, multidimensional problem, difference schemes, a priori estimate, stability and convergence.
Received: April 26, 2023
Revised: August 23, 2023
Accepted: September 19, 2023
First online: September 28, 2023
Bibliographic databases:
Document Type: Article
UDC: 519.642
MSC: 45K05, 65N12
Language: Russian
Citation: Z. V. Beshtokova, “Stability and convergence of the locally one-dimensional scheme A. A. Samarskii, approximating the multidimensional integro-differential equation of convection-diffusion with inhomogeneous boundary conditions of the first kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023), 407–426
Citation in format AMSBIB
\Bibitem{Bes23}
\by Z.~V.~Beshtokova
\paper Stability and convergence of the locally one-dimensional scheme A.~A.~Samarskii,
approximating the multidimensional integro-differential equation
of convection-diffusion with inhomogeneous boundary conditions of the first kind
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2023
\vol 27
\issue 3
\pages 407--426
\mathnet{http://mi.mathnet.ru/vsgtu2014}
\crossref{https://doi.org/10.14498/vsgtu2014}
\edn{https://elibrary.ru/XXIUYM}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2014
  • https://www.mathnet.ru/eng/vsgtu/v227/i3/p407
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024