Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2023, Volume 27, Number 3, Pages 427–445
DOI: https://doi.org/10.14498/vsgtu2003
(Mi vsgtu2003)
 

Differential Equations and Mathematical Physics

Description of the spectrum of one fourth-order operator matrix

T. H. Rasulov, H. M. Latipov

Bukhara State University, Bukhara, 705018, Uzbekistan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: An operator matrix ${\cal A}$ of fourth-order is considered. This operator corresponds to the Hamiltonian of a system with non conserved number and at most four particles on a lattice. It is shown that the operator matrix ${\cal A}$ is unitarily equivalent to the diagonal matrix, the diagonal elements of which are operator matrices of fourth-order. The location of the essential spectrum of the operator ${\cal A}$ is described, that is, two-particle, three-particle and four-particle branches of the essential spectrum of the operator ${\cal A}$ are singled out. It is established that the essential spectrum of the operator matrix ${\cal A}$ consists of the union of closed intervals whose number is not over 14. A Fredholm determinant is constructed such that its set of zeros and the discrete spectrum of the operator matrix ${\cal A}$ coincide, moreover, it was shown that the number of simple eigenvalues of the operator matrix ${\cal A}$ lying outside the essential spectrum does not exceed 16.
Keywords: Fock space, operator matrix, annihilation and creation operators, unitary equivalent operators, essential, discrete and point spectra.
Received: March 7, 2023
Revised: September 15, 2023
Accepted: September 18, 2023
First online: September 28, 2023
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 81Q10, 35P20, 47N50
Language: Russian
Citation: T. H. Rasulov, H. M. Latipov, “Description of the spectrum of one fourth-order operator matrix”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023), 427–445
Citation in format AMSBIB
\Bibitem{RasLat23}
\by T.~H.~Rasulov, H.~M.~Latipov
\paper Description of the spectrum of one fourth-order operator matrix
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2023
\vol 27
\issue 3
\pages 427--445
\mathnet{http://mi.mathnet.ru/vsgtu2003}
\crossref{https://doi.org/10.14498/vsgtu2003}
\edn{https://elibrary.ru/UKZLQF}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2003
  • https://www.mathnet.ru/eng/vsgtu/v227/i3/p427
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024