Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2023, Volume 27, Number 3, Pages 446–461
DOI: https://doi.org/10.14498/vsgtu2013
(Mi vsgtu2013)
 

Differential Equations and Mathematical Physics

On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein–Nemytskii type on the plane

Kh. A. Khachatryana, H. S. Petrosyanb

a Yerevan State University, Yerevan, 0025, Armenia
b National Agrarian University of Armenia, Yerevan, 0009, Armenia (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We consider a class of nonlinear integral equations with a stochastic and symmetric kernel on the whole line. With certain particular representations of the kernel and nonlinearity, equations of the above character arise in many branches of mathematical natural science. In particular, such equations occur in the theory $p$-adic strings, in the kinetic theory of gases, in mathematical biology and in the theory of radiative transfer. Constructive existence theorems are proved for non-negative non-trivial and bounded solutions under various restrictions on the function describing the nonlinearity in the equation. Under additional restrictions on the kernel and on the nonlinearity, a uniqueness theorem is also proved in a certain class of bounded and non-negative functions that have a finite limit in $\pm\infty$. Specific applied examples of the kernel and non-linearity are given that satisfy all the restrictions of the proven statements.
Keywords: monotonicity, successive approximations, convergence, bounded solution, solution limit, Caratheodory condition.
Funding agency Grant number
Ministry of Education, Science, Culture and Sports RA, Science Committee 21T-1A047
This research was supported by the Science Committee of the Republic of Armenia, scientific project no. 21T-1A047.
Received: April 19, 2023
Revised: June 13, 2023
Accepted: June 25, 2023
First online: September 4, 2023
Bibliographic databases:
Document Type: Article
UDC: 517.968.4
MSC: 45G05
Language: Russian
Citation: Kh. A. Khachatryan, H. S. Petrosyan, “On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein–Nemytskii type on the plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023), 446–461
Citation in format AMSBIB
\Bibitem{KhaPet23}
\by Kh.~A.~Khachatryan, H.~S.~Petrosyan
\paper On the solvability of a class of nonlinear two-dimensional integral equations Hammerstein--Nemytskii type on the plane
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2023
\vol 27
\issue 3
\pages 446--461
\mathnet{http://mi.mathnet.ru/vsgtu2013}
\crossref{https://doi.org/10.14498/vsgtu2013}
\edn{https://elibrary.ru/LDWVUL}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2013
  • https://www.mathnet.ru/eng/vsgtu/v227/i3/p446
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:374
    Full-text PDF :110
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024