Abstract:
A non-linear mathematical model of type-II thermoelastic continuum with fine microstructure is developed. The model is described in terms of 4-covariant field theoretical formalism attributed to field theories of continuum mechanics. Fine microstructure is introduced by dd-vectors and tensors playing role of extra field variables. A Lagrangian density for type-II thermoelastic continuum with fine microstructure is proposed and the least action principle is formulated. Virtual microstructural inertia is added to the considered action density. It is also valid for the thermal inertia. Corresponding 44-covariant field equations of type-II thermoelasticity are obtained. Constitutive equations of type-II microstructural thermoelasticity are discussed. Following the usual procedure for type-II micropolar thermoelastic Lagrangians functionally independent rotationally invariant arguments are obtained. Those are proved to form a complete set. Objective forms of the Lagrangians satisfying the frame indifference principle are given. Those are derived by using extrastrain vectors and tensors.
This work has been partially supported by the Russian Foundation for Basic Research
(project no. 13–01–00139-a “Hyperbolic Thermal Waves in Solid Bodies with Microstructure”) and by the Russian Ministry of Education and Science within the design basis portion of the state task to Samara State Technical University (project no. 16.2518.2014/(K)).
Original article submitted 25/II/2015 revision submitted – 11/III/2015
This publication is cited in the following 1 articles:
E. V. Murashkin, Y. N. Radayev, “A Negative Weight Pseudotensor Formulation of Coupled Hemitropic Thermoelasticity”, Lobachevskii J Math, 44:6 (2023), 2440