Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2015, Volume 19, Number 2, Pages 311–324
DOI: https://doi.org/10.14498/vsgtu1406
(Mi vsgtu1406)
 

This article is cited in 28 scientific papers (total in 28 papers)

Differential Equations and Mathematical Physics

Fluctuations of a beam with clamped ends

K. B. Sabitov

Samara State University of Architecture and Construction, Samara, 443001, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In this paper we study the initial problem for the equation of a beam with clamped ends. Uniqueness, existence and stability theorems are proved for the problem in the classes of regular and generalized solutions. Solution of the initial-boundary value problem is constructed in the form of a series in the system of eigenfunctions of one-dimensional spectral problem. We found the spectral problem eigenvalues as roots of the transcendental equation and the corresponding system of eigenfunctions. It is shown that the system of eigenfunctions is orthogonal and complete in $L_2$. On the basis of the completeness of the eigenfunctions the uniqueness theorem for the initial-boundary value problem for the equation of the beam is obtained. The generalized solution is defined as the limit of a sequence of regular solutions of the mean-square norm on the space variable.
Keywords: equation beams, initial-boundary value problem, spectral method, uniqueness, existence, series resistance.
Original article submitted 06/II/2015
revision submitted – 26/III/2015
Bibliographic databases:
Document Type: Article
UDC: 517.951; 517.958:531.12
MSC: 35G16
Language: Russian
Citation: K. B. Sabitov, “Fluctuations of a beam with clamped ends”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 311–324
Citation in format AMSBIB
\Bibitem{Sab15}
\by K.~B.~Sabitov
\paper Fluctuations of a beam with clamped ends
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2015
\vol 19
\issue 2
\pages 311--324
\mathnet{http://mi.mathnet.ru/vsgtu1406}
\crossref{https://doi.org/10.14498/vsgtu1406}
\zmath{https://zbmath.org/?q=an:06968964}
\elib{https://elibrary.ru/item.asp?id=24078308}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1406
  • https://www.mathnet.ru/eng/vsgtu/v219/i2/p311
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:1192
    Full-text PDF :744
    References:93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024