Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 1, Pages 43–50 (Mi vmumm9)  

This article is cited in 3 scientific papers (total in 3 papers)

Mechanics

Formulation of problems in the Bernoulli–Euler theory of anisotropic inhomogeneous beams

V. I. Gorbachev, T. M. Melnik

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (410 kB) Citations (3)
References:
Abstract: A procedure of reducing the three-dimensional problem of the elasticity theory for a rectilinear rod made of a nonuniform anisotropic material to a one-dimensional problem on the rod axis is studied. The rod is in equilibrium under the action of volume and surface forces. The internal force equations are derived on the basis of equilibrium conditions for the rod's part from its end to any cross section. The internal forces are related to the characteristics of the deformed axis under the prior assumptions on the distribution of displacements across the cross section of the rod. To regulate these assumptions, the displacements of the rod's points are expanded in two-dimensional Taylor series with respect to the transverse coordinates. Some physical hypotheses on the behavior of the cross section under deformation are used. The well-known hypotheses of Bernoulli–Euler, Timoshenko, and Reissner are considered in detail. A closed system of equations is proposed for the theory of nonuniform anisotropic rods on the basis of the Bernoulli–Euler hypothesis. The boundary conditions are formulated from the Lagrange variational principle. A number of particular cases are discussed.
Key words: rod, composite materials, elasticity theory, nonuniform anisotropic rods.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.577.21.0271
Received: 28.04.2017
English version:
Moscow University Mechanics Bulletin, 2018, Volume 73, Issue 1, Pages 18–26
DOI: https://doi.org/10.3103/S0027133018010041
Bibliographic databases:
Document Type: Article
UDC: 539.4.25
Language: Russian
Citation: V. I. Gorbachev, T. M. Melnik, “Formulation of problems in the Bernoulli–Euler theory of anisotropic inhomogeneous beams”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 1, 43–50; Moscow University Mechanics Bulletin, 73:1 (2018), 18–26
Citation in format AMSBIB
\Bibitem{GorMel18}
\by V.~I.~Gorbachev, T.~M.~Melnik
\paper Formulation of problems in the Bernoulli--Euler theory of anisotropic inhomogeneous beams
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 1
\pages 43--50
\mathnet{http://mi.mathnet.ru/vmumm9}
\zmath{https://zbmath.org/?q=an:1398.74190}
\transl
\jour Moscow University Mechanics Bulletin
\yr 2018
\vol 73
\issue 1
\pages 18--26
\crossref{https://doi.org/10.3103/S0027133018010041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427691000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85044125393}
Linking options:
  • https://www.mathnet.ru/eng/vmumm9
  • https://www.mathnet.ru/eng/vmumm/y2018/i1/p43
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :32
    References:31
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024