|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1983, Number 2, Pages 11–19
(Mi vmumm3463)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Mathematics
A generalization of the Hilbert–Waring theorem
A. A. Zenkin
Abstract:
Let
$$
\mathbf Z(m,r)=\biggl\{n\mid n\neq\sum^s(n_i^r-m^r)
\quad\text{for all}\quad s\geq1,n_i\geq m\biggr\}
$$
and
$$
\mathbf N(m,r,s)=\biggl\{n\mid n\neq\sum^s n_i^r,n_i\geq m,n>
s\cdot m^r\biggr\}.
$$
Then, for any $m\geq0$, $r\geq2$ there exist the number, $g(m,r)$, and the
finite invariante set, $\mathbf Z(m,r)$, such that for any $s\geq g(m,r)$
$$
\mathbf N(m,r,s)=\{s\cdot m^r+z\mid z\in\mathbf Z(m,r)\},
$$
If $m=0$ then we obtain the classical Hilbert–Waring theorem.
Received: 27.10.1981
Citation:
A. A. Zenkin, “A generalization of the Hilbert–Waring theorem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 2, 11–19
Linking options:
https://www.mathnet.ru/eng/vmumm3463 https://www.mathnet.ru/eng/vmumm/y1983/i2/p11
|
Statistics & downloads: |
Abstract page: | 72 | Full-text PDF : | 37 |
|