|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1983, Number 2, Pages 11–19
(Mi vmumm3463)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Mathematics
A generalization of the Hilbert–Waring theorem
A. A. Zenkin
Abstract:
Let
Z(m,r)={n∣n≠s∑(nri−mr)for alls≥1,ni≥m}
and
N(m,r,s)={n∣n≠s∑nri,ni≥m,n>s⋅mr}.
Then, for any m≥0, r≥2 there exist the number, g(m,r), and the
finite invariante set, Z(m,r), such that for any s≥g(m,r)
N(m,r,s)={s⋅mr+z∣z∈Z(m,r)},
If m=0 then we obtain the classical Hilbert–Waring theorem.
Received: 27.10.1981
Citation:
A. A. Zenkin, “A generalization of the Hilbert–Waring theorem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 2, 11–19
Linking options:
https://www.mathnet.ru/eng/vmumm3463 https://www.mathnet.ru/eng/vmumm/y1983/i2/p11
|
Statistics & downloads: |
Abstract page: | 91 | Full-text PDF : | 44 |
|