Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1983, Number 2, Pages 19–21 (Mi vmumm3464)  

Mathematics

Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces

S. P. Vorontsov
Abstract: Let $H(X)$ denote the group of all automorphisms of an algebraic $K3$-surface $X$ acting trivially on algebraic cycles. This group is cyclic and we denote the order of $H(X)$ by $m(X)$. We derive some results concerning possible values of $m(X)$. These results follow from some more general theorems on even lattices and their automorphisms.
Received: 15.12.1981
Bibliographic databases:
Document Type: Article
UDC: 511.44
Language: Russian
Citation: S. P. Vorontsov, “Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 2, 19–21
Citation in format AMSBIB
\Bibitem{Vor83}
\by S.~P.~Vorontsov
\paper Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1983
\issue 2
\pages 19--21
\mathnet{http://mi.mathnet.ru/vmumm3464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0697215}
\zmath{https://zbmath.org/?q=an:0532.14010}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3464
  • https://www.mathnet.ru/eng/vmumm/y1983/i2/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024