|
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2016, Issue 2, Pages 35–38
(Mi uzeru156)
|
|
|
|
Mathematics
On a representation of the Riemann zeta function
Yå. S. Mkrtchyan Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia
Abstract:
In this paper a new representation of the Riemann zeta function in the disc $U(2,1)$ is obtained: $\zeta (z) = \dfrac{1}{z-1} + \displaystyle\sum_{n=0}^\infty (-1)^n\alpha_n(z-2)^n,$ where the coefficients $\alpha_k$ are real numbers tending to zero. Hence is obtained $\gamma=\displaystyle\lim_{m\rightarrow\infty} \left[\displaystyle\sum_{k=0}^{n-1} \dfrac{\zeta^{(k)}(2)}{k!}-n\right]$, where $\gamma$ is the Euler–Mascheroni constant.
Keywords:
Riemann function, Euler–Mascheroni constant, entire function, power series.
Received: 18.02.2016 Accepted: 06.06.2016
Citation:
Yå. S. Mkrtchyan, “On a representation of the Riemann zeta function”, Proceedings of the YSU, Physical and Mathematical Sciences, 2016, no. 2, 35–38
Linking options:
https://www.mathnet.ru/eng/uzeru156 https://www.mathnet.ru/eng/uzeru/y2016/i2/p35
|
|