Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2019, Volume 5, Issue 1, Pages 109–126
DOI: https://doi.org/10.15826/umj.2019.1.011
(Mi umj79)
 

A mathematical model of an arterial bifurcation

German L. Zavorokhin

St. Petersburg Department of the Steklov Mathematical Institute, Russian Academy of Sciences, 27, Fontanka, St.Petersburg, 191023, Russia
References:
Abstract: An asymptotic model of an arterial bifurcation is presented. We propose a simple approximate method of calculation of the pressure drop matrix. The entries of this matrix are included in the modified transmission conditions, which were introduced earlier by Kozlov and Nazarov, and which give better approximation of 3D flow by 1D flow near a bifurcation of an artery as compared to the classical Kirchhoff conditions. The present modeling takes into account the heuristic Murrey cubic law.
Keywords: Stokes’ flow, bifurcation of a blood vessel, modified Kirchhoff conditions, pressure drop matrix, Murrey’s law.
Funding agency Grant number
Linköping University
Russian Foundation for Basic Research 16-31-60112
Bibliographic databases:
Document Type: Article
Language: English
Citation: German L. Zavorokhin, “A mathematical model of an arterial bifurcation”, Ural Math. J., 5:1 (2019), 109–126
Citation in format AMSBIB
\Bibitem{Zav19}
\by German~L.~Zavorokhin
\paper A mathematical model of an arterial bifurcation
\jour Ural Math. J.
\yr 2019
\vol 5
\issue 1
\pages 109--126
\mathnet{http://mi.mathnet.ru/umj79}
\crossref{https://doi.org/10.15826/umj.2019.1.011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3995660}
\zmath{https://zbmath.org/?q=an:1450.76044}
\elib{https://elibrary.ru/item.asp?id=38948067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071448655}
Linking options:
  • https://www.mathnet.ru/eng/umj79
  • https://www.mathnet.ru/eng/umj/v5/i1/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :139
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024