Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2019, Volume 5, Issue 1, Pages 101–108
DOI: https://doi.org/10.15826/umj.2019.1.010
(Mi umj78)
 

Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types

Sergey V. Zakharov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya str., Ekaterinburg, Russia, 620990
References:
Abstract: The Cauchy problem for a quasi-linear parabolic equation with a small parameter multiplying a higher derivative is considered in two cases when the solution of the limit problem has a point of gradient catastrophe. Asymptotic solutions are found by using the Cole-Hopf transform. The integrals determining the asymptotic solutions correspond to the Lagrange singularities of type $A$ and the boundary singularities of type $B$. The behavior of the asymptotic solutions is described in terms of the weighted Sobolev spaces.
Keywords: quasi-linear parabolic equation, Cole-Hopf transform, singular points, asymptotic solutions, Whitney fold singularity, Il’in’s universal solution, weighted Sobolev spaces.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sergey V. Zakharov, “Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types”, Ural Math. J., 5:1 (2019), 101–108
Citation in format AMSBIB
\Bibitem{Zak19}
\by Sergey~V.~Zakharov
\paper Asymptotic solutions of a parabolic equation near singular points of $A$ and $B$ types
\jour Ural Math. J.
\yr 2019
\vol 5
\issue 1
\pages 101--108
\mathnet{http://mi.mathnet.ru/umj78}
\crossref{https://doi.org/10.15826/umj.2019.1.010}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3995659}
\zmath{https://zbmath.org/?q=an:1448.35023}
\elib{https://elibrary.ru/item.asp?id=38948065}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071492317}
Linking options:
  • https://www.mathnet.ru/eng/umj78
  • https://www.mathnet.ru/eng/umj/v5/i1/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :54
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024