Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2011, Volume 3, Issue 2, Pages 79–84 (Mi ufa95)  

Explicit solution of the Cauchy problem to the equation for groundwater motion with a free surface

Kh. G. Umarov

Chechen State University, Groznyi, Russia
References:
Abstract: A linear partial differential equation modelling evolution of a free surface of the filtered fluid
$$ \lambda u_t-\Delta_2u_t=\alpha\Delta_2u-\beta\Delta^2_2u+f $$
is considered. Here $u(x,y,t)$ is the searched function characterizing the fluid pressure, $f=f(x,y,t)$ is the given function calculating an external influence on the filtration flow, $\Delta_2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the Laplace differential operator, $\lambda,\alpha,\beta$ are positive constants depending on characteristics of the watery soil. The explicit solution to the Cauchy problem for the above linear partial differential equation is obtained in the space $L_p(R^2)$, $1<p<+\infty$, by means of reducing the considered filtration problem to the abstract Cauchy problem in a Banach space. Solution of the corresponding homogeneous equation with respect to the temporary variable $t$ satisfies the semi-group property. The resulting estimation of the solution to the Cauchy problem in the space $L_p(R^2)$, $1<p<+\infty$, entails that the solution is continuously dependent on the initial data in any finite time interval.
Keywords: free surface of the filtered fluid, strongly continuous semi-groups of operators.
Received: 11.01.2011
Russian version:
Ufimskii Matematicheskii Zhurnal, 2011, Volume 3, Issue 2, Pages 81–86
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.986.7
Language: English
Original paper language: Russian
Citation: Kh. G. Umarov, “Explicit solution of the Cauchy problem to the equation for groundwater motion with a free surface”, Ufimsk. Mat. Zh., 3:2 (2011), 81–86; Ufa Math. J., 3:2 (2011), 79–84
Citation in format AMSBIB
\Bibitem{Uma11}
\by Kh.~G.~Umarov
\paper Explicit solution of the Cauchy problem to the equation for groundwater motion with a~free surface
\jour Ufimsk. Mat. Zh.
\yr 2011
\vol 3
\issue 2
\pages 81--86
\mathnet{http://mi.mathnet.ru/ufa95}
\zmath{https://zbmath.org/?q=an:1249.76009}
\transl
\jour Ufa Math. J.
\yr 2011
\vol 3
\issue 2
\pages 79--84
Linking options:
  • https://www.mathnet.ru/eng/ufa95
  • https://www.mathnet.ru/eng/ufa/v3/i2/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:393
    Russian version PDF:129
    English version PDF:24
    References:69
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024