Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2022, Volume 14, Issue 3, Pages 70–85
DOI: https://doi.org/10.13108/2022-14-3-70
(Mi ufa623)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Taylor coefficients of analytic function related with Euler number

A. B. Kostina, V. B. Sherstyukovb

a National Engineering Physics Institute "MEPhI", Moscow
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We consider a classical construction of second remarkable limit. We pose a question on asymptotically sharp description of the character of such approximation of the number $e$. In view of this we need the information on behavior of the coefficients in the power expansion for the function $f(x)=e^{-1}\,(1+x)^{1/x}$ converging in the interval $-1<x<1$. We obtain a recurrent rule regulating the forming of the mentioned coefficients. We show that the coefficients form a sign-alternating sequence of rational numbers $(-1)^n\,a_n$, where $n\in\mathbb{N}\cup\{0\}$ and $a_0=1$, the absolute values of which strictly decay. On the base of the Faá di Bruno formula for the derivatives of a composed function we propose a combinatorial way of calculating the numbers $a_n$ as $n\in\mathbb{N}$. The original function $f(x)$ is the restriction of the function $f(z)$ on the real ray $x>-1$ having the same Taylor coefficients and being analytic in the complex plane $\mathbb{C}$ with the cut along $(-\infty,\,-1]$. By the methods of the complex analysis we obtain an integral representation for $a_n$ for each value of the parameter $n\in\mathbb{N}$. We prove that $a_n\rightarrow 1/e$ as $n\rightarrow\infty$ and find the convergence rate of the difference $a_n-1/e$ to zero. We also discuss the issue on choosing the contour in the integral Cauchy formula for calculating the Taylor coefficients $(-1)^n\,a_n$ of the function $f(z)$. We find the exact values of arising in calculations special improper integrals. The results of the made study allows us to give a series of general two-sided estimates for the deviation $e-(1+x)^{1/x}$ consistent with the asymptotics of $f(x)$ as $x\to 0$. We discuss the possibilities of applying the obtained statements.
Keywords: Euler number, analytic function, Taylor coefficients, Faà di Bruno formula, integral representation, asymptotic behavior.
Received: 12.04.2022
Russian version:
Ufimskii Matematicheskii Zhurnal, 2022, Volume 14, Issue 3, Pages 74–89
Bibliographic databases:
Document Type: Article
UDC: 517.547.3
MSC: 30B10
Language: English
Original paper language: Russian
Citation: A. B. Kostin, V. B. Sherstyukov, “On Taylor coefficients of analytic function related with Euler number”, Ufimsk. Mat. Zh., 14:3 (2022), 74–89; Ufa Math. J., 14:3 (2022), 70–85
Citation in format AMSBIB
\Bibitem{KosShe22}
\by A.~B.~Kostin, V.~B.~Sherstyukov
\paper On Taylor coefficients of analytic function related with Euler number
\jour Ufimsk. Mat. Zh.
\yr 2022
\vol 14
\issue 3
\pages 74--89
\mathnet{http://mi.mathnet.ru/ufa623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4459787}
\transl
\jour Ufa Math. J.
\yr 2022
\vol 14
\issue 3
\pages 70--85
\crossref{https://doi.org/10.13108/2022-14-3-70}
Linking options:
  • https://www.mathnet.ru/eng/ufa623
  • https://doi.org/10.13108/2022-14-3-70
  • https://www.mathnet.ru/eng/ufa/v14/i3/p74
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:236
    Russian version PDF:53
    English version PDF:17
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024