Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2022, Volume 14, Issue 3, Pages 22–32
DOI: https://doi.org/10.13108/2022-14-3-22
(Mi ufa618)
 

This article is cited in 3 scientific papers (total in 3 papers)

Maximal term of Dirichlet series converging in half-plane: stability theorem

A. M. Gaisina, T. I. Belousb

a Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa
b Ufa State Aviation Technical University
References:
Abstract: We consider a problem on equivalence of logarithms of maximal terms in the Hadamard composition (modified series) $ \sum \limits_{n} a_nb_ne^{\lambda_nz}$ of the Dirichlet series $\sum \limits_{n} a_ne^{\lambda_nz} $ and $\sum \limits_{n} b_ne^{\lambda_nz}$ with positive exponents, the convergence domain of which is a half-plane. A similar problem for entire Dirichlet series was first studied by A.M. Gaisin in 2003 and there was obtained a criterion of the stability of the maximal term $\mu(\sigma)=\max \limits_{n\geq 1}\{{\vert a_n\vert} e^{\lambda_n\sigma}\}. $ This result turned out to be useful in studying asymptotic properties of the Dirichlet series on arbitrary curves going to infinity, namely, in the proof of the famous Pólya conjecture.
Both in the case of entire Dirichlet series and ones converging only in the half-plane, a key role in such problems is played by Leontiev formulae for the coefficients. The functions of the corresponding biorthogonal system contains a factor, which the derivative of a characteristic function at the points $\lambda_n$, $n\geq 1$. This fact naturally leads to the considered here problem on the stability of the maximal term.
We obtain a criterion ensuring the equivalence of logarithm of the maximal term in the Dirichlet series, the convergence domain of which is a half-plane, to the logarithm of the maximal term of the modified series on an asymptotic set.
Keywords: Dirichlet series, convergence half-plane, maximal term, Hadamard composition, asymptotic set.
Funding agency Grant number
Russian Science Foundation 21-11-00168
Received: 02.03.2022
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D10
Language: English
Original paper language: Russian
Citation: A. M. Gaisin, T. I. Belous, “Maximal term of Dirichlet series converging in half-plane: stability theorem”, Ufa Math. J., 14:3 (2022), 22–32
Citation in format AMSBIB
\Bibitem{GaiBel22}
\by A.~M.~Gaisin, T.~I.~Belous
\paper Maximal term of Dirichlet series
converging in half-plane: stability theorem
\jour Ufa Math. J.
\yr 2022
\vol 14
\issue 3
\pages 22--32
\mathnet{http://mi.mathnet.ru//eng/ufa618}
\crossref{https://doi.org/10.13108/2022-14-3-22}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4507771}
Linking options:
  • https://www.mathnet.ru/eng/ufa618
  • https://doi.org/10.13108/2022-14-3-22
  • https://www.mathnet.ru/eng/ufa/v14/i3/p23
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:126
    Russian version PDF:40
    English version PDF:14
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024