Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2020, Volume 12, Issue 2, Pages 88–96
DOI: https://doi.org/10.13108/2020-12-2-88
(Mi ufa512)
 

Some Chebyshev type inequalities for generalized Riemann–Liouville operator

B. Halim, A. Senouci, M. Sofrani

University of Tiaret, BP P 78 zaâroura, 14000, Tiaret, Algeria
References:
Abstract: In this paper we are interested in the famous inequality introduced by Chebyshev. This inequality has several generalizations and applications in different fields of mathematics and others. In particular it is important for us the applications of fractional calculus for the different integral Chebyshev type inequalities.
We establish and prove some theorems and corollaries relating to fractional integral, by applying more general fractional integral operator than Riemann-Liouville one:
$$ K^{\alpha,\beta}_{u,v}=\frac{v(x)}{\Gamma(\alpha)}\int\limits^{x}_{0}(x-t)^{\alpha -1}\left[\ln\left(\frac{x}{t}\right)\right]^{\beta-1}f(t) u(t)dt, \quad x>0 $$
where $\alpha>0$, $\beta\geq 1$, $u$ and $v$ locally integrable non-negative weight functions, $\Gamma $ is the Euler Gamma-function. First, fractional integral Chebyshev type inequalities are obtained for operator $K^{\alpha,\beta}_{u,v}$ with two synchronous or two asynchronous functions and by induction for several functions. Second, we consider an extended Chebyshev functional
\begin{align*} T(f,g,p,q):=&\int\limits_{a}^{b} q(x) dx \int\limits_{a}^{b}p(x) f(x) g(x) dx + \int\limits_{a}^{b} p(x)dx\int\limits_{a}^{b}q(x)f(x)g(x)dx \\ &- \left(\int\limits_{a}^{b} q(x) f(x) dx\right)\left(\int\limits_{a}^{b} p(x) g(x)dx\right) \\ &- \left(\int\limits_{a}^{b} p(x) f(x) dx\right) \left(\int\limits_{a}^{b} q(x) g(x) dx\right), \end{align*}
where $p$, $q$ are positive integrable weight functions on $[a,b]$. In this case fractional integral weighted inequalities are established for two fractional integral operators $K^{\alpha_{1},\beta_{1}}_{u_{1},v_{1}}$ and $K^{\alpha_{2},\beta_{2}}_{u_{2},v_{2}}$, with two synchronous or asynchronous functions, where $\alpha_ {1} \neq \alpha_{2}$, $\beta _{1} \neq \beta_{2}$ and $u_{1} \neq u_{2}$, $v_{1} \neq v_{2}$. In addition, a fractional integral Hölder type inequality for several functions is established using the operator $K^{\alpha,\beta}_{u,v}$. At the end, another fractional integral Chebyshev type inequality is given for increasing function $f$ and differentiable function $g$.
Keywords: Chebyshev functional, Integral Inequalities, RL-fractional operator.
Funding agency Grant number
Projets de Recherche Formation-Universitaire COOL03UN140120180002
This paper is supported by University of Tiaret, PRFU project, code COOL03UN140120180002.
Received: 30.09.2019
Bibliographic databases:
Document Type: Article
MSC: 34B45, 81Q15
Language: English
Original paper language: English
Citation: B. Halim, A. Senouci, M. Sofrani, “Some Chebyshev type inequalities for generalized Riemann–Liouville operator”, Ufa Math. J., 12:2 (2020), 88–96
Citation in format AMSBIB
\Bibitem{HalSenSof20}
\by B.~Halim, A.~Senouci, M.~Sofrani
\paper Some Chebyshev type inequalities for generalized Riemann--Liouville operator
\jour Ufa Math. J.
\yr 2020
\vol 12
\issue 2
\pages 88--96
\mathnet{http://mi.mathnet.ru//eng/ufa512}
\crossref{https://doi.org/10.13108/2020-12-2-88}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000607969100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097367279}
Linking options:
  • https://www.mathnet.ru/eng/ufa512
  • https://doi.org/10.13108/2020-12-2-88
  • https://www.mathnet.ru/eng/ufa/v12/i2/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:118
    Russian version PDF:68
    English version PDF:16
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024