Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 1, Pages 114–120
DOI: https://doi.org/10.13108/2019-11-1-114
(Mi ufa465)
 

On zeros of polynomial

Subhasis Das

Department of Mathematics, Kurseong College, Dow Hill Road, 734203, Kurseong, India
References:
Abstract: For a given polynomial
\begin{equation*} P\left( z\right) =z^{n}+a_{n-1}z^{n-1}+a_{n-2}z^{n-2}+\cdots +a_{1}z+a_{0} \end{equation*}
with real or complex coefficients, the Cauchy bound
\begin{equation*} \left\vert z\right\vert <1+A,\qquad A=\underset{0\leqslant j\leqslant n-1}{ \max }\left\vert a_{j}\right\vert \end{equation*}
does not reflect the fact that for $A$ tending to zero, all the zeros of $P\left( z\right) $ approach the origin $z=0$. Moreover, Guggenheimer (1964) generalized the Cauchy bound by using a lacunary type polynomial
\begin{equation*} p\left( z\right) =z^{n}+a_{n-p}z^{n-p}+a_{n-p-1}z^{n-p-1}+\cdots +a_{1}z+a_{0}, \qquad 0<p<n\text{.} \end{equation*}
In this paper we obtain new results related with above facts. Our first result is the best possible. For the case as $A$ tends to zero, it reflects the fact that all the zeros of $P(z)$ approach the origin $z=0$; it also sharpens the result obtained by Guggenheimer. The rest of the related results concern zero-free bounds giving some important corollaries. In many cases the new bounds are much better than other well-known bounds.
Keywords: zeroes, region, Cauchy bound, Lacunary type polynomials.
Received: 30.08.2017
Russian version:
Ufimskii Matematicheskii Zhurnal, 2019, Volume 11, Issue 1, Pages 113–119
Bibliographic databases:
Document Type: Article
UDC: 512.622.2
MSC: 30C15, 30C10, 26C10
Language: English
Original paper language: English
Citation: Subhasis Das, “On zeros of polynomial”, Ufimsk. Mat. Zh., 11:1 (2019), 113–119; Ufa Math. J., 11:1 (2019), 114–120
Citation in format AMSBIB
\Bibitem{Das19}
\by Subhasis~Das
\paper On zeros of polynomial
\jour Ufimsk. Mat. Zh.
\yr 2019
\vol 11
\issue 1
\pages 113--119
\mathnet{http://mi.mathnet.ru/ufa465}
\transl
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 1
\pages 114--120
\crossref{https://doi.org/10.13108/2019-11-1-114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466964100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066047822}
Linking options:
  • https://www.mathnet.ru/eng/ufa465
  • https://doi.org/10.13108/2019-11-1-114
  • https://www.mathnet.ru/eng/ufa/v11/i1/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:244
    Russian version PDF:105
    English version PDF:20
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024