Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 1, Pages 121–132
DOI: https://doi.org/10.13108/2019-11-1-121
(Mi ufa466)
 

This article is cited in 4 scientific papers (total in 4 papers)

Characteristic function and deficiency of algebroid functions on annuli

Ashok Rathod

Department of Mathematics, Karnatak University, Dharwad-580003, India
References:
Abstract: In this paper, we develop the value distribution theory for meromorphic functions with maximal deficiency sum for algebroid functions on annuli and we study the relationship between the deficiency of algebroid function on annuli and that of their derivatives. Let $W(z)$ be an $\nu$-valued algebroid function on the annulus $\mathbb{A}\left(\frac{1}{R_{0}},R_{0}\right)$ $(1<R_{0}\leq +\infty)$ with maximal deficiency sum and the order of $W(z)$ is finite. Then
i. $\limsup\limits_{r\rightarrow\infty}\frac{T_{0}(r,W')}{T_{0}(r,W)}= 2-\delta_{0}(\infty,W)-\theta_{0}(\infty,W);$

ii. $\limsup\limits_{r\rightarrow\infty}\frac{N_{0}(r,\frac{1}{W'})}{T_{0}(r,W')}=0;$

iii. $\frac{1-\delta_{0}(\infty,W)}{2-\delta_{0}(\infty,W)}\leq K_{0}(W')\leq \frac{2(1-\delta_{0}(\infty,W))}{2-\delta_{0}(\infty,W)},$

where
$$K_{0}(W')=\limsup\limits_{r\rightarrow\infty}\frac{N_{0}(r,W')+N_{0}(r,\frac{1}{W'})}{T_{0}(r,W')}.$$
Keywords: Nevanlinna Theory, maximal deficiency sum, algebroid functions, the annuli.
Funding agency Grant number
UGC-Rajiv Gandhi National Fellowship F1-17.1/2013-14-SC-KAR40380
The author is supported by the UGC-Rajiv Gandhi National Fellowship (no. F1-17.1/2013-14-SC-KAR40380) of India.
Received: 26.10.2017
Russian version:
Ufimskii Matematicheskii Zhurnal, 2019, Volume 11, Issue 1, Pages 120–131
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: 30D35
Language: English
Original paper language: English
Citation: Ashok Rathod, “Characteristic function and deficiency of algebroid functions on annuli”, Ufimsk. Mat. Zh., 11:1 (2019), 120–131; Ufa Math. J., 11:1 (2019), 121–132
Citation in format AMSBIB
\Bibitem{Rat19}
\by Ashok~Rathod
\paper Characteristic function and deficiency of algebroid functions on annuli
\jour Ufimsk. Mat. Zh.
\yr 2019
\vol 11
\issue 1
\pages 120--131
\mathnet{http://mi.mathnet.ru/ufa466}
\transl
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 1
\pages 121--132
\crossref{https://doi.org/10.13108/2019-11-1-121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466964100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066021183}
Linking options:
  • https://www.mathnet.ru/eng/ufa466
  • https://doi.org/10.13108/2019-11-1-121
  • https://www.mathnet.ru/eng/ufa/v11/i1/p120
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:279
    Russian version PDF:83
    English version PDF:15
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024