Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2019, Volume 11, Issue 1, Pages 42–62
DOI: https://doi.org/10.13108/2019-11-1-42
(Mi ufa459)
 

This article is cited in 2 scientific papers (total in 2 papers)

On isomorphism of some functional spaces under action of integro-differential operators

S. B. Klimentovab

a Southern Federal University, Milchakov str. 8-a, 344090, Rostov-on-Don, Russia
b Southern Mathematical Institute, Vatutin str. 53, 362027, Vladikavkaz, Russia
References:
Abstract: In the paper we consider representations of the second kind for solutions to the linear general uniform first order elliptic system in the unit circle $D= \{z : |z| \leq 1\}$ written in terms of complex functions:
\begin{equation*} \mathcal D w \equiv \partial_{\bar z} w + q_1(z) \partial_z w + q_2(z) \partial_{\bar z} \overline w +A(z)w+B(z) \overline w=R(z), \end{equation*}
where $w=w(z)=u(z)+iv(z)$ is the sought complex function, $q_1(z)$ and $q_2(z)$ are given measurable complex functions satisfying the uniform ellipticity condition of the system:
\begin{equation*} |q_1(z)| + |q_2(z)| \leq q_0 = {\rm const}<1,\, z\in \overline D, \end{equation*}
and $A(z),\,B(z), \,R(z)\in L_p(\overline D)$, $p>2$, are also given complex functions.
The representation of the second kind is based on the well–known Pompeiu's formula: if $w\in W^1_p(\overline D)$, $p>2$, then
\begin{equation*} \displaystyle w(z) = \dfrac{1}{2 \pi i} \int\limits_{\Gamma} \dfrac{w(\zeta)}{\zeta-z}d \zeta - \dfrac{1}{\pi}\iint\limits_D \dfrac{\partial w}{\partial \bar z} \cdot \dfrac{d \xi d \eta}{\zeta-z}, \end{equation*}
where $w(z) \in W^1_p(\overline D)$, $p>2$. Then for the solution $w(z)$ we can write the representation
\begin{equation*} \Omega(w) = \dfrac{1}{2 \pi i} \int\limits_{\Gamma} \dfrac{w(\zeta)}{\zeta-z}d \zeta +TR(z) \end{equation*}
where
\begin{equation*} \Omega(w) \equiv w(z) + T ( q_1(z) \partial_z w + q_2(z) \partial_{\bar z} \overline w +A(z)w + B(z) \overline w). \end{equation*}

Under appropriate assumptions about on coefficients we prove that $\Omega$ is the isomorphism of the spaces $C^k_\alpha (\overline D) $ and $W^k_p (\overline D) $, $k\geq $1, $0 <\alpha <$1, $p> $2. These results develop and complete B.V. Boyarsky's works, where representations of the first kind were obtained. Also this work complete author's results on representations of the second kind with more difficult operators. As an implication of the properties of the operator $\Omega$, we obtain apriori estimates for the norms $\|w\|_{C^{k+1}_{\alpha}(\overline D)}$ and $\|w\|_{W^{k}_{p}(\overline D)}$.
Keywords: general elliptic first order system, representation of the second kind.
Received: 02.06.2017
Russian version:
Ufimskii Matematicheskii Zhurnal, 2019, Volume 11, Issue 1, Pages 39–60
Bibliographic databases:
Document Type: Article
UDC: 517.518.234 + 517.548.3
MSC: 35C15
Language: English
Original paper language: Russian
Citation: S. B. Klimentov, “On isomorphism of some functional spaces under action of integro-differential operators”, Ufimsk. Mat. Zh., 11:1 (2019), 39–60; Ufa Math. J., 11:1 (2019), 42–62
Citation in format AMSBIB
\Bibitem{Kli19}
\by S.~B.~Klimentov
\paper On isomorphism of some functional spaces under action of integro-differential operators
\jour Ufimsk. Mat. Zh.
\yr 2019
\vol 11
\issue 1
\pages 39--60
\mathnet{http://mi.mathnet.ru/ufa459}
\transl
\jour Ufa Math. J.
\yr 2019
\vol 11
\issue 1
\pages 42--62
\crossref{https://doi.org/10.13108/2019-11-1-42}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466964100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066016670}
Linking options:
  • https://www.mathnet.ru/eng/ufa459
  • https://doi.org/10.13108/2019-11-1-42
  • https://www.mathnet.ru/eng/ufa/v11/i1/p39
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:336
    Russian version PDF:86
    English version PDF:21
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024