Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2017, Volume 9, Issue 4, Pages 44–53
DOI: https://doi.org/10.13108/2017-9-4-44
(Mi ufa402)
 

This article is cited in 2 scientific papers (total in 2 papers)

On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity

Y. Sh. Il'yasov, E. E. Kholodnov

Institute of Mathematics, Ufa Scientific Center, RAS, Chernyshevsky str. 112, 450077, Ufa, Russia
References:
Abstract: In a bounded domain $\Omega \subset \mathbb{R}^n$, we consider the following hyperbolic equation
\begin{equation*} \begin{cases} v_{tt} = \Delta_p v+\lambda |v|^{p-2}v-|v|^{\alpha-2}v,& x\in \Omega, \\ v\bigr{|}_{\partial \Omega}=0. \end{cases} \end{equation*}
We assume that $1<\alpha<p<+\infty$; this implies that the nonlinearity in the right hand side of the equation is of a non-Lipschitz type. As a rule, this type of nonlinearity prevent us from applying standard methods from the theory of nonlinear differential equations. An additional difficulty arises due to the presence of the $ p $-Laplacian $\Delta_p (\cdot):=\text{div}(|\nabla(\cdot)|^{p-2}\nabla(\cdot))$ in the equation. In the first result, the theorem on the existence of the so-called stationary ground state of the equation is proved. The proof of this result is based on the Nehari manifold method. In the main result of the paper we state that each stationary ground state is unstable globally in time. The proof is based on the development of an approach by Payne and Sattinger introduced for studying the stability of solutions to hyperbolic equations.
Keywords: stability of solutions, nonlinear hyperbolic equations, Nehari manifold method, $p$-Laplacian.
Received: 28.08.2017
Bibliographic databases:
Document Type: Article
UDC: 517.957
MSC: 35J61, 35J92, 35J50
Language: English
Original paper language: Russian
Citation: Y. Sh. Il'yasov, E. E. Kholodnov, “On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity”, Ufa Math. J., 9:4 (2017), 44–53
Citation in format AMSBIB
\Bibitem{IlyKho17}
\by Y.~Sh.~Il'yasov, E.~E.~Kholodnov
\paper On global instability of solutions to hyperbolic equations with non-Lipschitz nonlinearity
\jour Ufa Math. J.
\yr 2017
\vol 9
\issue 4
\pages 44--53
\mathnet{http://mi.mathnet.ru//eng/ufa402}
\crossref{https://doi.org/10.13108/2017-9-4-44}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424521900005}
\elib{https://elibrary.ru/item.asp?id=30562591}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85038124148}
Linking options:
  • https://www.mathnet.ru/eng/ufa402
  • https://doi.org/10.13108/2017-9-4-44
  • https://www.mathnet.ru/eng/ufa/v9/i4/p45
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:212
    Russian version PDF:80
    English version PDF:19
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024