|
This article is cited in 3 scientific papers (total in 3 papers)
Spectral properties of two particle Hamiltonian on one-dimensional lattice
M. E. Muminovab, A. M. Khurramova a A. Navoi Samarkand State University, Samarkand, Uzbekistan
b Faculty of Sains, Universiti Teknologi Malaysia (UTM), Skudai,
81310, s. Johor, Malaysia
Abstract:
We consider a system of two arbitrary quantum particles on a one-dimensional lattice with special dispersion functions (describing site-to-site particle transport), where the particles interact by a chosen attraction potential. We study how the number of eigenvalues of the family of the operators $h(k)$ depends on the particle interaction energy and the total quasimomentum $k\in\mathbb T$ (where $\mathbb T$ is a one-dimensional torus). Depending on the particle interaction energy, we obtain conditions for existence of multiple eigenvalues below the essential spectrum of operator $h(k)$.
Keywords:
two-particle Hamiltonian on one dimensional lattice, eigenvalue, multiple eigenvalue.
Received: 30.01.2014
Citation:
M. E. Muminov, A. M. Khurramov, “Spectral properties of two particle Hamiltonian on one-dimensional lattice”, Ufa Math. J., 6:4 (2014), 99–107
Linking options:
https://www.mathnet.ru/eng/ufa263https://doi.org/10.13108/2014-6-4-99 https://www.mathnet.ru/eng/ufa/v6/i4/p102
|
|