|
This article is cited in 7 scientific papers (total in 7 papers)
Solving of spectral problems for curl and Stokes operators
R. S. Saks Institute of Mathematics CS USC RAS,
Chernyshevskii str., 112,
450077, Ufa, Russia
Abstract:
In the work we explicitly solve the spectral problems for curl, gradient-divergence, and Stokes operators in a ball $B$ of radius $R$. The eigenfunctions $\mathbf{u}^{\pm}_{\kappa}$ of the curl associated with non-zero eigenvalues $\pm\lambda_{\kappa}$ are expressed by explicit formulas, as well as the vector-functions $\mathbf{q}_{\kappa}$ associated with the zero eigenvalue,
\[rot \mathbf{u}^{\pm}_{\kappa}=\pm\lambda_{\kappa}
\mathbf{u}^{\pm}_{\kappa}, \quad \psi_n(\pm\lambda_{\kappa} R)=0, \quad
\mathbf{n}\cdot\mathbf{u}^{\pm}_{\kappa}|_S=0;\quad
rot \mathbf{q}_{\kappa}=0, \quad
\mathbf{n}\cdot\mathbf{q}_{\kappa}|_S=0,\]
where
\[\psi_n(z)=(-z)^n(\frac{d}{zdz})^n\frac{\sin z}z, \quad \kappa=(n,m,k), n\geq 0, m\in \mathbb{N}, |k|\leq n\]
The same vector-functions are the eigenfunctions for the gradient-divergence operator with other eigenvalues,
\[\nabla \mathrm{div} \mathbf{u}^{\pm}_{\kappa}=0;
\quad
\nabla \mathrm{div} \mathbf{q}_{\kappa}=\mu_{\kappa}\mathbf{q}_{\kappa},
\quad \mu_{\kappa}=(\alpha_{n,m}/R)^2,\quad \psi_n'(\alpha_{n,m})=0.\]
The constructed system of vector eigenfunctions is complete and orthogonal in space
${\mathbf{{L}}_{2}}(B)$. The eigenfunctions
$(\mathbf{v}_\kappa, \ p_\kappa)$ of the Stokes operator in the ball are represented as a sum of two eigenfunctions of the curl associated with opposite eigenvalues:
${\mathbf{v}_{\kappa }}= \mathbf{u}_{\kappa }^{+}+\mathbf{u}_{\kappa
}^{-},$ $p_\kappa=\hbox{const}.$
Keywords:
curl, gradient-divergence, and Stokes operators, eigenvalues, eigenfunctions, Fourier series.
Received: 12.01.2012
Citation:
R. S. Saks, “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81
Linking options:
https://www.mathnet.ru/eng/ufa199https://doi.org/10.13108/2013-5-2-63 https://www.mathnet.ru/eng/ufa/v5/i2/p63
|
|