Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 2, Pages 63–81
DOI: https://doi.org/10.13108/2013-5-2-63
(Mi ufa199)
 

This article is cited in 7 scientific papers (total in 7 papers)

Solving of spectral problems for curl and Stokes operators

R. S. Saks

Institute of Mathematics CS USC RAS, Chernyshevskii str., 112, 450077, Ufa, Russia
References:
Abstract: In the work we explicitly solve the spectral problems for curl, gradient-divergence, and Stokes operators in a ball $B$ of radius $R$. The eigenfunctions $\mathbf{u}^{\pm}_{\kappa}$ of the curl associated with non-zero eigenvalues $\pm\lambda_{\kappa}$ are expressed by explicit formulas, as well as the vector-functions $\mathbf{q}_{\kappa}$ associated with the zero eigenvalue, \[rot \mathbf{u}^{\pm}_{\kappa}=\pm\lambda_{\kappa}  \mathbf{u}^{\pm}_{\kappa}, \quad \psi_n(\pm\lambda_{\kappa} R)=0, \quad \mathbf{n}\cdot\mathbf{u}^{\pm}_{\kappa}|_S=0;\quad rot \mathbf{q}_{\kappa}=0, \quad \mathbf{n}\cdot\mathbf{q}_{\kappa}|_S=0,\] where \[\psi_n(z)=(-z)^n(\frac{d}{zdz})^n\frac{\sin z}z, \quad \kappa=(n,m,k), n\geq 0,   m\in \mathbb{N},   |k|\leq n\] The same vector-functions are the eigenfunctions for the gradient-divergence operator with other eigenvalues, \[\nabla \mathrm{div} \mathbf{u}^{\pm}_{\kappa}=0; \quad \nabla \mathrm{div} \mathbf{q}_{\kappa}=\mu_{\kappa}\mathbf{q}_{\kappa}, \quad \mu_{\kappa}=(\alpha_{n,m}/R)^2,\quad \psi_n'(\alpha_{n,m})=0.\] The constructed system of vector eigenfunctions is complete and orthogonal in space ${\mathbf{{L}}_{2}}(B)$.
The eigenfunctions $(\mathbf{v}_\kappa, \ p_\kappa)$ of the Stokes operator in the ball are represented as a sum of two eigenfunctions of the curl associated with opposite eigenvalues: ${\mathbf{v}_{\kappa }}= \mathbf{u}_{\kappa }^{+}+\mathbf{u}_{\kappa }^{-},$ $p_\kappa=\hbox{const}.$
Keywords: curl, gradient-divergence, and Stokes operators, eigenvalues, eigenfunctions, Fourier series.
Received: 12.01.2012
Bibliographic databases:
Document Type: Article
UDC: 517.956.226
MSC: 35P05, 35P10
Language: English
Original paper language: Russian
Citation: R. S. Saks, “Solving of spectral problems for curl and Stokes operators”, Ufa Math. J., 5:2 (2013), 63–81
Citation in format AMSBIB
\Bibitem{Sak13}
\by R.~S.~Saks
\paper Solving of spectral problems for curl and Stokes operators
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 2
\pages 63--81
\mathnet{http://mi.mathnet.ru//eng/ufa199}
\crossref{https://doi.org/10.13108/2013-5-2-63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3430777}
\elib{https://elibrary.ru/item.asp?id=19063037}
Linking options:
  • https://www.mathnet.ru/eng/ufa199
  • https://doi.org/10.13108/2013-5-2-63
  • https://www.mathnet.ru/eng/ufa/v5/i2/p63
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024