Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 1, Pages 112–124
DOI: https://doi.org/10.13108/2013-5-1-112
(Mi ufa191)
 

This article is cited in 3 scientific papers (total in 3 papers)

On growth characteristics of operator-valued functions

S. N. Mishin

Orel State University
References:
Abstract: In the work Liouville theorem and the concept of order and type of entire function are generalized to the case of operator-valued function with values in the space $\mathrm{Lec}(\mathbf{H}_1,\mathbf{H})$ of all linear continuous operators acting from a locally convex space $\mathbf{H}_1$ to a locally convex space $\mathbf{H}$ with equicontinuous bornology. We find the formulae expressing the order and type of operator-valued function in terms of characteristics of the sequence of coefficients. Some properties of order and type of operator-valued function are established.
Keywords: locally convex space, order and type of sequence of operators, order and type of entire function, equicontinuous bornology, convergence by bornology, operator-valued function.
Received: 16.08.2012
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.53
Language: English
Original paper language: Russian
Citation: S. N. Mishin, “On growth characteristics of operator-valued functions”, Ufa Math. J., 5:1 (2013), 112–124
Citation in format AMSBIB
\Bibitem{Mis13}
\by S.~N.~Mishin
\paper On growth characteristics of operator-valued functions
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 1
\pages 112--124
\mathnet{http://mi.mathnet.ru//eng/ufa191}
\crossref{https://doi.org/10.13108/2013-5-1-112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3429955}
\elib{https://elibrary.ru/item.asp?id=18929631}
Linking options:
  • https://www.mathnet.ru/eng/ufa191
  • https://doi.org/10.13108/2013-5-1-112
  • https://www.mathnet.ru/eng/ufa/v5/i1/p112
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:387
    Russian version PDF:116
    English version PDF:13
    References:64
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024