Ufa Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ufimsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ufa Mathematical Journal, 2013, Volume 5, Issue 1, Pages 63–82
DOI: https://doi.org/10.13108/2013-5-1-63
(Mi ufa187)
 

This article is cited in 8 scientific papers (total in 8 papers)

Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains

L. M. Kozhevnikova, A. A. Leontiev

Sterlitamak State Pedagogical Academy
References:
Abstract: This work is devoted to a class of parabolic equations with double nonlinearity whose representative is a model equation
$$(|u|^{k-2}u)_t=\sum_{\alpha=1}^n(|u_{x_{\alpha}} |^{p_{\alpha}-2}u_{x_{\alpha}})_{x_\alpha},\quad p_n\geq \ldots \geq p_1>k,\quad k\in(1,2).$$
For the solution of the first mixed problem in a cylindrical domain $ D=(0,\infty)$ $\times\Omega, \;$ ${\Omega\subset \mathbb{R}_n,}$ $\;n\geq 2$ with homogeneous Dirichlet boundary condition and compactly supported initial function precise estimates the rate of decay as $t\rightarrow\infty$ are established. Earlier these results were obtained by the authors for $k\geq 2$. The case $k\in(1,2)$ differs by the method of constructing Galerkin's approximations that for an isotropic model equation was proposed by E. R. Andriyanova and F. Kh. Mukminov.
Keywords: anisotropic equation, doubly nonlinear parabolic equations, existence of strong solution, decay rate of solution.
Received: 23.12.2011
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: English
Original paper language: Russian
Citation: L. M. Kozhevnikova, A. A. Leontiev, “Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains”, Ufa Math. J., 5:1 (2013), 63–82
Citation in format AMSBIB
\Bibitem{KozLeo13}
\by L.~M.~Kozhevnikova, A.~A.~Leontiev
\paper Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains
\jour Ufa Math. J.
\yr 2013
\vol 5
\issue 1
\pages 63--82
\mathnet{http://mi.mathnet.ru//eng/ufa187}
\crossref{https://doi.org/10.13108/2013-5-1-63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3429951}
\elib{https://elibrary.ru/item.asp?id=18929627}
Linking options:
  • https://www.mathnet.ru/eng/ufa187
  • https://doi.org/10.13108/2013-5-1-63
  • https://www.mathnet.ru/eng/ufa/v5/i1/p63
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Уфимский математический журнал
    Statistics & downloads:
    Abstract page:476
    Russian version PDF:142
    English version PDF:20
    References:83
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024